A274105
Triangle read by rows: T(n,k) = number of configurations of k nonattacking bishops on the black squares of an n X n chessboard (0 <= k <= n - [n>1]).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 5, 4, 1, 8, 14, 4, 1, 13, 46, 46, 8, 1, 18, 98, 184, 100, 8, 1, 25, 206, 674, 836, 308, 16, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 41, 612, 4196, 13756, 20476, 11896, 1912, 32, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 61, 1440, 16940, 106772, 361780, 629336, 506600, 154256, 11600, 64
Offset: 0
Triangle begins:
1;
1, 1;
1, 2;
1, 5, 4;
1, 8, 14, 4;
1, 13, 46, 46, 8;
1, 18, 98, 184, 100, 8;
1, 25, 206, 674, 836, 308, 16;
1, 32, 356, 1704, 3532, 2816, 632, 16;
1, 41, 612, 4196, 13756, 20476, 11896, 1912, 32;
1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32;
1, 61, 1440, 16940, 106772, 361780, 629336, 506600, 154256, 11600, 64;
...
Corresponding independence polynomials:
1, (empty graph)
1+x, (K_1)
1+2*x, (P_2 = K_2)
1+5*x+4*x^2, (butterfly graph)
1+8*x+14*x^2+4*x^3,
...
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. See Section 9.
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. See Section 9. [Annotated scanned copy]
- Eder G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas. arXiv:2411.16492 [math.CO], 2024. (considered as white board).
- Eric Weisstein's World of Mathematics, Black Bishop Graph
- Eric Weisstein's World of Mathematics, Independence Polynomial
-
with(combinat); with(gfun);
T:=n->add(stirling2(n+1,n+1-k)*x^k, k=0..n);
# bishops on black squares
bish:=proc(n) local m,k,i,j,t1,t2; global T;
if n<2 then return [1$(n+1)] fi;
if (n mod 2) = 0 then m:=n/2;
t1:=add(binomial(m,k)*T(2*m-1-k)*x^k, k=0..m);
else
m:=(n-1)/2;
t1:=add(binomial(m+1,k)*T(2*m-k)*x^k, k=0..m+1);
fi;
seriestolist(series(t1,x,2*n+1));
end;
for n from 0 to 12 do lprint(bish(n)); od:
# second Maple program:
T:= (n,k)-> add(binomial(ceil(n/2),j)*Stirling2(n-j,n-k),j=0..k):
seq(seq(T(n,k), k=0..n-`if`(n>1,1,0)), n=0..11); # Alois P. Heinz, Dec 01 2024
-
CoefficientList[Table[Sum[x^n Binomial[Ceiling[n/2], k] BellB[n - k, 1/x], {k, 0, Ceiling[n/2]}], {n, 10}], x] (* Eric W. Weisstein, Jun 26 2017 *)
-
def stirling2_negativek(n, k):
if k < 0: return 0
else: return stirling_number2(n, k)
print([sum([binomial(ceil(n/2), l)*stirling2_negativek(n-l, n-k) for l in [0..k]]) for n in [0..10] for k in [0..n-1+kronecker_delta(n,1)+kronecker_delta(n,0)]]) # Eder G. Santos, Dec 01 2024
A146304
Number of distinct ways to place bishops (up to 2n-2) on an n X n chessboard so that no bishop is attacking another and that it is not possible to add another bishop.
Original entry on oeis.org
1, 4, 10, 64, 660, 7744, 111888, 1960000, 40829184, 989479936, 27559645440, 870414361600, 30942459270912, 1225022400102400, 53716785891102720, 2589137004664520704, 136573353235553058816, 7838079929528363843584, 487668908919708442951680, 32741107405951528945844224
Offset: 1
For n=2, the a(2) = 4 solutions are to place two bishops on the same row (two solutions) or column (two solutions).
-
M[sig_List, n_, k_, d_, x_] := M[sig, n, k, d, x] = If[n == 0, Boole[k == 0], If[k > 0, k*x*M[sig, n - 1, k - 1, d, x], 0] + If[k < n && sig[[n]] > d, (sig[[n]] - d)*x*M[sig, n - 1, k, d + 1, x], 0] + If[k + sig[[n]] - d < n, M[sig, n - 1, k + sig[[n]] - d, sig[[n]], x], 0]];
Q[sig_List, x_] := M[sig, Length[sig], 0, 0, x];
Bishop[n_, white_] := Table[n - i + If[white == 1, 1 - Mod[i, 2], Mod[i, 2]], {i, 1, n - If[white == 1, Mod[n, 2], 1 - Mod[n, 2]]}]
a[n_] := Q[Bishop[n, 0], 1]*Q[Bishop[n, 1], 1];
Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Jun 15 2017, translated from Andrew Howroyd's PARI code *)
-
\\ Needs memoization - see note on algorithm for a faster version.
M(sig,n,k,d,x)={if(n==0,k==0, if(k>0,k*x*M(sig,n-1,k-1,d,x),0) + if(kd,(sig[n]-d)*x*M(sig,n-1,k,d+1,x),0) + if(k+sig[n]-dAndrew Howroyd, Jun 05 2017
A216078
Number of horizontal and antidiagonal neighbor colorings of the odd squares of an n X 2 array with new integer colors introduced in row major order.
Original entry on oeis.org
1, 1, 3, 7, 27, 87, 409, 1657, 9089, 43833, 272947, 1515903, 10515147, 65766991, 501178937, 3473600465, 28773452321, 218310229201, 1949230218691, 16035686850327, 153281759047387, 1356791248984295, 13806215066685433, 130660110400259849, 1408621900803060705
Offset: 1
Some solutions for n = 5:
x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x
x 2 x 0 x 0 x 2 x 0 x 1 x 1 x 2 x 2 x 1
0 x 2 x 1 x 3 x 1 x 0 x 2 x 3 x 0 x 0 x
x 3 x 1 x 2 x 2 x 0 x 1 x 1 x 1 x 2 x 0
There are 4 white squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 4 ways to place 1 and 2 ways to place 2 so a(4) = 1 + 4 + 2 = 7. - _Andrew Howroyd_, Jun 06 2017
-
a:= n-> (m-> add(binomial(m, k)*combinat[bell](m+k+e)
, k=0..m))(iquo(n-1, 2, 'e')):
seq(a(n), n=1..26); # Alois P. Heinz, Oct 03 2022
-
a[n_] := Module[{m, e}, {m, e} = QuotientRemainder[n - 1, 2];
Sum[Binomial[m, k]*BellB[m + k + e], {k, 0, m}]];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 25 2022, after Francesca Aicardi *)
A216332
Number of horizontal and antidiagonal neighbor colorings of the even squares of an n X 2 array with new integer colors introduced in row major order.
Original entry on oeis.org
1, 2, 3, 10, 27, 114, 409, 2066, 9089, 52922, 272947, 1788850, 10515147, 76282138, 501178937, 3974779402, 28773452321, 247083681522, 1949230218691, 17984917069018, 153281759047387, 1510073008031682, 13806215066685433
Offset: 1
Some solutions for n=5:
..0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x
..x..1....x..1....x..1....x..0....x..1....x..1....x..0....x..1....x..1....x..0
..0..x....2..x....2..x....1..x....2..x....2..x....1..x....2..x....0..x....1..x
..x..2....x..0....x..1....x..2....x..1....x..0....x..1....x..0....x..1....x..2
..3..x....3..x....3..x....0..x....2..x....1..x....0..x....2..x....0..x....3..x
There are 5 black squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 5 ways to place 1 and 4 ways to place 2 so a(4)=1+5+4=10. - _Andrew Howroyd_, Jun 06 2017
-
Table[Sum[Binomial[Ceiling[n/2], k] BellB[n - k], {k, 0, Ceiling[n/2]}], {n, 0, 20}] (* Eric W. Weisstein, Jun 25 2017 *)
A274106
Triangle read by rows: T(n,k) = total number of configurations of k nonattacking bishops on the white squares of an n X n chessboard (0 <= k <= n-1+[n=0]).
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 2, 1, 8, 14, 4, 1, 12, 38, 32, 4, 1, 18, 98, 184, 100, 8, 1, 24, 188, 576, 652, 208, 8, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32
Offset: 0
Triangle begins:
1;
1;
1, 2;
1, 4, 2;
1, 8, 14, 4;
1, 12, 38, 32, 4;
1, 18, 98, 184, 100, 8;
1, 24, 188, 576, 652, 208, 8;
1, 32, 356, 1704, 3532, 2816, 632, 16;
1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16;
1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32;
1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32;
...
From _Eder G. Santos_, Dec 16 2024: (Start)
For example, for n = 3, k = 2, the T(3,2) = 2 nonattacking configurations are:
+---+---+---+ +---+---+---+
| | B | | | | | |
+---+---+---+ +---+---+---+
| | | | , | B | | B |
+---+---+---+ +---+---+---+
| | B | | | | | |
+---+---+---+ +---+---+---+
(End)
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. See Section 9.
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. See Section 9. [Annotated scanned copy]
- J. Perott, Sur le problème des fous, Bulletin de la S. M. F., tome 11 (1883), pp. 173-186.
- Eder G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas. arXiv:2411.16492 [math.CO], 2024. (considered as black board).
- Eric Weisstein's World of Mathematics, White Bishop Graph.
-
with(combinat): with(gfun):
T := n -> add(stirling2(n+1,n+1-k)*x^k, k=0..n):
# bishops on white squares
bish := proc(n) local m,k,i,j,t1,t2; global T;
if n=0 then return [1] fi;
if (n mod 2) = 0 then m:=n/2;
t1:=add(binomial(m,k)*T(2*m-1-k)*x^k, k=0..m);
else
m:=(n-1)/2;
t1:=add(binomial(m,k)*T(2*m-k)*x^k, k=0..m+1);
fi;
seriestolist(series(t1,x,2*n+1));
end:
for n from 0 to 12 do lprint(bish(n)); od:
-
T[n_] := Sum[StirlingS2[n+1, n+1-k]*x^k, {k, 0, n}];
bish[n_] := Module[{m, t1, t2}, If[Mod[n, 2] == 0,
m = n/2; t1 = Sum[Binomial[m, k]*T[2*m-1-k]*x^k, {k, 0, m}],
m = (n-1)/2; t1 = Sum[Binomial[m, k]*T[2*m - k]*x^k, {k, 0, m+1}]];
CoefficientList[t1 + O[x]^(2*n+1), x]];
Table[bish[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 25 2022, after Maple code *)
-
def stirling2_negativek(n, k):
if k < 0: return 0
else: return stirling_number2(n, k)
print([sum([binomial(floor(n/2), j)*stirling2_negativek(n-j, n-k) for j in [0..k]]) for n in [0..10] for k in [0..n-1+kronecker_delta(n,0)]]) # Eder G. Santos, Dec 01 2024
A378590
Total number of ways to place k nonattacking bishops on an n X n chess board. Triangle T(n,k) read by rows (0 <= k <= 2*n-[n>0]-[n>1]).
Original entry on oeis.org
1, 1, 1, 1, 4, 4, 1, 9, 26, 26, 8, 1, 16, 92, 232, 260, 112, 16, 1, 25, 240, 1124, 2728, 3368, 1960, 440, 32, 1, 36, 520, 3896, 16428, 39680, 53744, 38368, 12944, 1600, 64, 1, 49, 994, 10894, 70792, 282248, 692320, 1022320, 867328, 389312, 81184, 5792, 128
Offset: 0
Triangle begins:
1;
1 1;
1 4 4;
1 9 26 26 8;
1 16 92 232 260 112 16;
1 25 240 1124 2728 3368 1960 440 32;
1 36 520 3896 16428 39680 53744 38368 12944 1600 64;
1 49 994 10894 70792 282248 692320 1022320 867328 389312 81184 5792 128;
...
For example, for n = 2, k=2, the T(2,2)=4 nonattacking configurations are:
+---+---+ +---+---+ +---+---+ +---+---+
| B | B | | B | | | | B | | | |
+---+---+ , +---+---+ , +---+---+ , +---+---+
| | | | B | | | | B | | B | B |
+---+---+ +---+---+ +---+---+ +---+---+
- S. Chaiken, C. R. H. Hanusa, and T. Zaslavsky, A q-Queens Problem. V. Some of Our Favorite Pieces: Queens, Bishops, Rooks, and Nightriders, J. Korean Math. Soc., 57(6): 1407-1433, 2020; see also arXiv preprint, arXiv:1609.00853 [math.CO], 2016-2020.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 234-259.
- Eder G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas, arXiv:2411.16492 [math.CO], 2024.
Main diagonal T(n,n) gives
A002465.
-
def stirling2_negativek(n,k):
if k < 0: return 0
else: return stirling_number2(n,k)
print([sum([sum([binomial(floor(n/2),i)*stirling2_negativek(n-i,n-j)*sum([binomial(ceil(n/2),l)*stirling2_negativek(n-l,n-k+j) for l in [0..k-j]]) for i in [0..j]]) for j in [0..k]]) for n in [0..10] for k in [0..2*n-2+kronecker_delta(n,1)+2*kronecker_delta(n,0)]])
A215943
Number of ways to place k non-attacking bishops on an n x n toroidal chessboard, summed over all k >= 0.
Original entry on oeis.org
2, 9, 34, 289, 1546, 19321, 130922, 2169729, 17572114, 364466281, 3405357682, 85143154849, 896324308634, 26309790300249, 306827170866106, 10366719612433921, 132240988644215842, 5064730099043043529, 69974827707903049154, 3000912883089564050721
Offset: 1
-
Table[Sum[If[EvenQ[n],2^k*k!*Sum[Binomial[n/2,i]^2*Binomial[n/2,k-i]^2/Binomial[k,i],{i,0,k}],Binomial[n,k]^2*k!],{k,0,n}],{n,1,25}]
Showing 1-7 of 7 results.
Comments