A036563
a(n) = 2^n - 3.
Original entry on oeis.org
-2, -1, 1, 5, 13, 29, 61, 125, 253, 509, 1021, 2045, 4093, 8189, 16381, 32765, 65533, 131069, 262141, 524285, 1048573, 2097149, 4194301, 8388605, 16777213, 33554429, 67108861, 134217725, 268435453, 536870909, 1073741821, 2147483645
Offset: 0
a(2) = 1;
a(3) = 2 + 1 + 2 = 5;
a(4) = 4 + 2 + 1 + 2 + 4 = 13;
a(5) = 8 + 4 + 2 + 1 + 2 + 4 + 8 = 29; etc. - _Philippe Deléham_, Feb 24 2014
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
- Yael Berstein and Shmuel Onn, The Graver complexity of integer programming, Annals of Combinatorics, Vol. 13, No. 3 (2009), pp. 289-296; arXiv preprint, arXiv:0709.1500 [math.CO], 2007.
- L' Education Mathématique, Problème 8907, 49e Annee, No 14, 15 Avril 1947, p. 113
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. [Annotated scanned copy]
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. Sequence is on page 267.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
List([0..40], n-> 2^n -3); # G. C. Greubel, Nov 18 2019
-
[2^n-3: n in [0..40]]; // Vincenzo Librandi, May 09 2011
-
A036563:=n->2^n-3; seq(A036563(n), n=0..40); # Wesley Ivan Hurt, Jun 26 2014
-
Table[2^n - 3, {n, 0, 40}] (* Wesley Ivan Hurt, Jun 26 2014 *)
LinearRecurrence[{3,-2},{-2,-1},40] (* Harvey P. Dale, Sep 26 2018 *)
-
a(n)= 2^n-3 \\ Charles R Greathouse IV, Dec 22 2011
-
def A036563(n): return (1<Chai Wah Wu, Sep 27 2024
-
[gaussian_binomial(n,1,2)-2 for n in range(0,40)] # Zerinvary Lajos, May 31 2009
A272644
Triangle read by rows: T(n,m) = Sum_{i=0..m} Stirling2(m+1,i+1)*(-1)^(m-i)*i^(n-m)*i!, for n >= 2, m = 1..n-1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 73, 29, 1, 1, 61, 301, 301, 61, 1, 1, 125, 1081, 2069, 1081, 125, 1, 1, 253, 3613, 11581, 11581, 3613, 253, 1, 1, 509, 11593, 57749, 95401, 57749, 11593, 509, 1, 1, 1021, 36301, 268381, 673261, 673261, 268381, 36301, 1021, 1
Offset: 2
Triangle begins:
n\m [1] [2] [3] [4] [5] [6] [7] [8]
[2] 1;
[3] 1, 1;
[4] 1, 5, 1;
[5] 1, 13, 13, 1;
[6] 1, 29, 73, 29, 1;
[7] 1, 61, 301, 301, 61, 1;
[8] 1, 125, 1081, 2069, 1081, 125, 1;
[9] 1, 253, 3613, 11581, 11581, 3613, 253, 1;
...
- Gheorghe Coserea, Rows n = 2..101, flattened
- F. Alayont and N. Krzywonos, Rook Polynomials in Three and Higher Dimensions, 2012.
- Beáta Bényi, A Bijection for the Boolean Numbers of Ferrers Graphs, Graphs and Combinatorics (2022) Vol. 38, No. 10.
- Beata Bényi and Peter Hajnal, Combinatorial properties of poly-Bernoulli relatives, arXiv preprint arXiv:1602.08684 [math.CO], 2016. See D_{n,k}.
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. The array is on page 267.
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. [Annotated scanned copy]
- D. E. Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (16.2).
- D. E. Knuth, Notes on four arrays of numbers arising from the enumeration of CRC constraints and min-and-max-closed constraints, May 06 2024. Mentions this sequence.
- J. Riordan, Letter to N. J. A. Sloane, Dec. 1976.
Largest term in each row gives
A272645.
Second diagonal from the right is 2^i - 3.
Third diagonal from the right edge is
A006230.
-
A272644 := proc(n,m)
add(combinat[stirling2](m+1,i+1)*(-1)^(m-i)*i^(n-m)*i!,i=0..m) ;
end proc:
seq(seq(A272644(n,m),m=1..n-1),n=2..10) ; # R. J. Mathar, Mar 04 2018
-
Table[Sum[StirlingS2[m + 1, i + 1] (-1)^(m - i) i^(n - m) i!, {i, 0, m} ], {n, 11}, {m, n - 1}] /. {} -> {0} // Flatten (* Michael De Vlieger, May 19 2016 *)
-
A(n,m) = sum(i=0, m, stirling(m+1, i+1, 2) * (-1)^((m-i)%2) * i^(n - m) * i!);
concat(vector(10, n, vector(n, m, A(n+1, m)))) \\ Gheorghe Coserea, May 16 2016
A216332
Number of horizontal and antidiagonal neighbor colorings of the even squares of an n X 2 array with new integer colors introduced in row major order.
Original entry on oeis.org
1, 2, 3, 10, 27, 114, 409, 2066, 9089, 52922, 272947, 1788850, 10515147, 76282138, 501178937, 3974779402, 28773452321, 247083681522, 1949230218691, 17984917069018, 153281759047387, 1510073008031682, 13806215066685433
Offset: 1
Some solutions for n=5:
..0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x
..x..1....x..1....x..1....x..0....x..1....x..1....x..0....x..1....x..1....x..0
..0..x....2..x....2..x....1..x....2..x....2..x....1..x....2..x....0..x....1..x
..x..2....x..0....x..1....x..2....x..1....x..0....x..1....x..0....x..1....x..2
..3..x....3..x....3..x....0..x....2..x....1..x....0..x....2..x....0..x....3..x
There are 5 black squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 5 ways to place 1 and 4 ways to place 2 so a(4)=1+5+4=10. - _Andrew Howroyd_, Jun 06 2017
-
Table[Sum[Binomial[Ceiling[n/2], k] BellB[n - k], {k, 0, Ceiling[n/2]}], {n, 0, 20}] (* Eric W. Weisstein, Jun 25 2017 *)
A288183
Triangle read by rows: T(n,k) = number of arrangements of k non-attacking bishops on the black squares of an n X n board with every square controlled by at least one bishop.
Original entry on oeis.org
2, 1, 4, 0, 4, 4, 0, 0, 22, 8, 0, 0, 16, 64, 8, 0, 0, 6, 128, 228, 16, 0, 0, 0, 72, 784, 528, 16, 0, 0, 0, 0, 1056, 4352, 1688, 32, 0, 0, 0, 0, 432, 9072, 18336, 3584, 32, 0, 0, 0, 0, 120, 7776, 76488, 87168, 11024, 64, 0, 0, 0, 0, 0, 2880, 109152, 484416, 313856, 22592, 64
Offset: 2
Triangle begins:
2;
1, 4;
0, 4, 4;
0, 0, 22, 8;
0, 0, 16, 64, 8;
0, 0, 6, 128, 228, 16;
0, 0, 0, 72, 784, 528, 16;
0, 0, 0, 0, 1056, 4352, 1688, 32;
0, 0, 0, 0, 432, 9072, 18336, 3584, 32;
0, 0, 0, 0, 120, 7776, 76488, 87168, 11024, 64;
...
The first term is T(2,1) = 2.
A088960
Triangle read by rows: T(n,k) = number of configurations of k non-attacking bishops on the white squares of an n X n chessboard (for n even, 0 <= k < n).
Original entry on oeis.org
1, 2, 1, 8, 14, 4, 1, 18, 98, 184, 100, 8, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 72, 2050, 29900, 242292, 1109184, 2800016, 3653280, 2180656, 474368, 23264, 64
Offset: 2
Brant Jones (brant(AT)math.washington.edu), Oct 28 2003
T(4,1) = 8 because there are 8 white squares on the 4 X 4 board to put one bishop; T(4,3) = 4 because we must place one bishop on each of three principal diagonal lines, which can be accomplished in 2*1*2=4 ways.
Triangle begins:
1, 2
1, 8, 14, 4
1, 18, 98, 184, 100, 8
1, 32, 356, 1704, 3532, 2816, 632, 16
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1997; see section 2.4.
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. See Section 9.
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. See Section 9. [Annotated scanned copy]
- S.-M. Ma, T. Mansour, M. Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169, 2013
-
T[n_, k_] := (Sum[(-1)^j*Binomial[n - k - 1, j]/(n - k - 1)!*(n - k + 1 - j)^(n/2)*(n - k - j)^(n/2 - 1), {j, 0, n - k - 1}]); Flatten[Table[T[n, k], {n, 2, 12, 2}, {k, 0, n - 1}]] (* Vaclav Kotesovec, Mar 24 2011 *)
A274106
Triangle read by rows: T(n,k) = total number of configurations of k nonattacking bishops on the white squares of an n X n chessboard (0 <= k <= n-1+[n=0]).
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 2, 1, 8, 14, 4, 1, 12, 38, 32, 4, 1, 18, 98, 184, 100, 8, 1, 24, 188, 576, 652, 208, 8, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32
Offset: 0
Triangle begins:
1;
1;
1, 2;
1, 4, 2;
1, 8, 14, 4;
1, 12, 38, 32, 4;
1, 18, 98, 184, 100, 8;
1, 24, 188, 576, 652, 208, 8;
1, 32, 356, 1704, 3532, 2816, 632, 16;
1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16;
1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32;
1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32;
...
From _Eder G. Santos_, Dec 16 2024: (Start)
For example, for n = 3, k = 2, the T(3,2) = 2 nonattacking configurations are:
+---+---+---+ +---+---+---+
| | B | | | | | |
+---+---+---+ +---+---+---+
| | | | , | B | | B |
+---+---+---+ +---+---+---+
| | B | | | | | |
+---+---+---+ +---+---+---+
(End)
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. See Section 9.
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. See Section 9. [Annotated scanned copy]
- J. Perott, Sur le problème des fous, Bulletin de la S. M. F., tome 11 (1883), pp. 173-186.
- Eder G. Santos, Counting non-attacking chess pieces placements: Bishops and Anassas. arXiv:2411.16492 [math.CO], 2024. (considered as black board).
- Eric Weisstein's World of Mathematics, White Bishop Graph.
-
with(combinat): with(gfun):
T := n -> add(stirling2(n+1,n+1-k)*x^k, k=0..n):
# bishops on white squares
bish := proc(n) local m,k,i,j,t1,t2; global T;
if n=0 then return [1] fi;
if (n mod 2) = 0 then m:=n/2;
t1:=add(binomial(m,k)*T(2*m-1-k)*x^k, k=0..m);
else
m:=(n-1)/2;
t1:=add(binomial(m,k)*T(2*m-k)*x^k, k=0..m+1);
fi;
seriestolist(series(t1,x,2*n+1));
end:
for n from 0 to 12 do lprint(bish(n)); od:
-
T[n_] := Sum[StirlingS2[n+1, n+1-k]*x^k, {k, 0, n}];
bish[n_] := Module[{m, t1, t2}, If[Mod[n, 2] == 0,
m = n/2; t1 = Sum[Binomial[m, k]*T[2*m-1-k]*x^k, {k, 0, m}],
m = (n-1)/2; t1 = Sum[Binomial[m, k]*T[2*m - k]*x^k, {k, 0, m+1}]];
CoefficientList[t1 + O[x]^(2*n+1), x]];
Table[bish[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 25 2022, after Maple code *)
-
def stirling2_negativek(n, k):
if k < 0: return 0
else: return stirling_number2(n, k)
print([sum([binomial(floor(n/2), j)*stirling2_negativek(n-j, n-k) for j in [0..k]]) for n in [0..10] for k in [0..n-1+kronecker_delta(n,0)]]) # Eder G. Santos, Dec 01 2024
A297195
Number of bitriangular permutations (row sums of A272644 if that triangle is prefixed with two rows for n=0,1).
Original entry on oeis.org
1, 0, 1, 2, 7, 28, 133, 726, 4483, 30896, 235105, 1957930, 17712799, 172980804, 1813760317, 20323234814, 242353047355, 3064550705752, 40958281206169, 576917769130578, 8541793624670551, 132623408805525740, 2154730841214003061, 36560670776303600422, 646697046042017004787
Offset: 0
G.f. = 1 + x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 133*x^6 + 726*x^7 + ... - _Michael Somos_, Oct 17 2024
- A.N.W. Hone, N. Joshi and A.V. Kitaev, An Entire Function Defined by a Nonlinear Recurrence Relation, J. of the London Math. Soc., Oct. 2002, vol. 66, iss. 2, pp. 377-387.
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. The array is on page 267.
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. [Annotated scanned copy]
-
A297195 := proc(n)
add(A272644(n, m), m=0..n) ;
end proc:
seq(A297195(n), n=0..30) ; # R. J. Mathar, Mar 04 2018
-
A272644[n_, m_] := Sum[StirlingS2[m+1, i+1] (-1)^(m-i) i^(n-m) i!, {i, 0, m}];
a[n_] := If[n == 1, 1, Sum[A272644[n, m], {m, 1, n-1}]];
Array[a, 24] (* Jean-François Alcover, Apr 03 2020 *)
-
{a(n) = if(n<2, n==0, sum(m=1, n-1, sum(i=0, m, (-1)^(m-i)*i^(n-m)*i!*stirling(m+1, i+1, 2))))}; /* Michael Somos, Oct 17 2024 */
A272643
Irregular triangle read by rows, enumerating permutations of "specification (321^{n-5})".
Original entry on oeis.org
1, 6, 3, 1, 17, 33, 9, 1, 40, 184, 168, 27, 1, 87, 792, 1592, 807, 81
Offset: 5
The triangle starts at row n=5:
1, 6, 3,
1, 17, 33, 9,
1, 40, 184, 168, 27,
1, 87, 792, 1592, 807, 81,
...
Showing 1-8 of 8 results.
Comments