cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A036563 a(n) = 2^n - 3.

Original entry on oeis.org

-2, -1, 1, 5, 13, 29, 61, 125, 253, 509, 1021, 2045, 4093, 8189, 16381, 32765, 65533, 131069, 262141, 524285, 1048573, 2097149, 4194301, 8388605, 16777213, 33554429, 67108861, 134217725, 268435453, 536870909, 1073741821, 2147483645
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the n-th number with exactly n 1's in binary representation. - Reinhard Zumkeller, Mar 06 2003
Berstein and Onn: "For every m = 3k+1, the Graver complexity of the vertex-edge incidence matrix of the complete bipirtite graph K(3,m) satisfies g(m) >= 2^(k+2)-3." - Jonathan Vos Post, Sep 15 2007
Row sums of triangle A135857. - Gary W. Adamson, Dec 01 2007
a(n) = A164874(n-1,n-2) for n > 2. - Reinhard Zumkeller, Aug 29 2009
Starting (1, 5, 13, ...) = eigensequence of a triangle with A016777: (1, 4, 7, 10, ...) as the left border and the rest 1's. - Gary W. Adamson, Jul 24 2010
An elephant sequence, see A175655. For the central square just one A[5] vector, with decimal value 186, leads to this sequence (n >= 2). For the corner squares this vector leads to the companion sequence A123203. - Johannes W. Meijer, Aug 15 2010
First differences of A095264: A095264(n+1) - A095264(n) = a(n+2). - J. M. Bergot, May 13 2013
a(n+2) is given by the sum of n-th row of triangle of powers of 2: 1; 2 1 2; 4 2 1 2 4; 8 4 2 1 2 4 8; ... - Philippe Deléham, Feb 24 2014
Also, the decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. See A283508. - Robert Price, Mar 09 2017
a(n+3) is the value of the Ackermann function A(3,n) or ack(3,n). - Olivier Gérard, May 11 2018

Examples

			a(2) = 1;
a(3) = 2 + 1 + 2 = 5;
a(4) = 4 + 2 + 1 + 2 + 4 = 13;
a(5) = 8 + 4 + 2 + 1 + 2 + 4 + 8 = 29; etc. - _Philippe Deléham_, Feb 24 2014
		

Crossrefs

Row sums of triangular array A027960. A column of A119725.

Programs

Formula

a(n) = 2*a(n-1) + 3.
The sequence 1, 5, 13, ... has a(n) = 4*2^n-3. These are the partial sums of A151821. - Paul Barry, Aug 25 2003
a(n) = A118654(n-3, 6), for n > 2. - N. J. A. Sloane, Sep 29 2006
Row sums of triangle A130459 starting (1, 5, 13, 29, 61, ...). - Gary W. Adamson, May 26 2007
Row sums of triangle A131112. - Gary W. Adamson, Jun 15 2007
Binomial transform of [1, 4, 4, 4, ...] = (1, 5, 13, 29, 61, ...). - Gary W. Adamson, Sep 20 2007
a(n) = 2*StirlingS2(n,2) - 1, for n > 0. - Ross La Haye, Jul 05 2008
a(n) = A000079(n) - 3. - Omar E. Pol, Dec 21 2008
From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-2*x) - 3/(1-x).
E.g.f.: exp(2*x) - 3*exp(x). (End)
For n >= 3, a(n) = 2<+>n, where operation <+> is defined in A206853. - Vladimir Shevelev, Feb 17 2012
a(n) = 3*a(n-1) - 2*a(n-2) for n > 1, a(0)=-2, a(1)=-1. - Philippe Deléham, Dec 23 2013
Sum_{n>=1} 1/a(n) = A331372. - Amiram Eldar, Nov 18 2020

A272644 Triangle read by rows: T(n,m) = Sum_{i=0..m} Stirling2(m+1,i+1)*(-1)^(m-i)*i^(n-m)*i!, for n >= 2, m = 1..n-1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 73, 29, 1, 1, 61, 301, 301, 61, 1, 1, 125, 1081, 2069, 1081, 125, 1, 1, 253, 3613, 11581, 11581, 3613, 253, 1, 1, 509, 11593, 57749, 95401, 57749, 11593, 509, 1, 1, 1021, 36301, 268381, 673261, 673261, 268381, 36301, 1021, 1
Offset: 2

Views

Author

N. J. A. Sloane, May 07 2016

Keywords

Comments

Gives number of bitriangular permutations. Could be prefixed with row 0 containing a single 1. - N. J. A. Sloane, Jan 10 2018

Examples

			Triangle begins:
n\m  [1]     [2]     [3]     [4]     [5]     [6]     [7]     [8]
[2]  1;
[3]  1,      1;
[4]  1,      5,      1;
[5]  1,     13,     13,      1;
[6]  1,     29,     73,     29,      1;
[7]  1,     61,    301,    301,     61,      1;
[8]  1,    125,   1081,   2069,   1081,    125,      1;
[9]  1,    253,   3613,  11581,  11581,   3613,    253,      1;
...
		

Crossrefs

Column 2 is A036563.
Largest term in each row gives A272645.
Second diagonal from the right is 2^i - 3.
Third diagonal from the right edge is A006230.
T(2n,n) gives A048144.
For row sums see A297195.

Programs

  • Maple
    A272644 := proc(n,m)
        add(combinat[stirling2](m+1,i+1)*(-1)^(m-i)*i^(n-m)*i!,i=0..m) ;
    end proc:
    seq(seq(A272644(n,m),m=1..n-1),n=2..10) ; # R. J. Mathar, Mar 04 2018
  • Mathematica
    Table[Sum[StirlingS2[m + 1, i + 1] (-1)^(m - i) i^(n - m) i!, {i, 0, m} ], {n, 11}, {m, n - 1}] /. {} -> {0} // Flatten  (* Michael De Vlieger, May 19 2016 *)
  • PARI
    A(n,m) = sum(i=0, m, stirling(m+1, i+1, 2) * (-1)^((m-i)%2) * i^(n - m) * i!);
    concat(vector(10, n, vector(n, m, A(n+1, m))))  \\ Gheorghe Coserea, May 16 2016

Formula

T(n,m) = Sum_{i=0..m} Stirling2(m+1, i+1)*(-1)^(m-i)*i^(n-m)*i!, for n>=2, m=1..n-1, where Stirling2(n,k) is defined by A008277.
A001469(n+1) = Sum_{m=1..2*n-1} (-1)^(m-1)*T(2*n,m). - Gheorghe Coserea, May 18 2016

Extensions

More terms from Gheorghe Coserea, May 16 2016

A216332 Number of horizontal and antidiagonal neighbor colorings of the even squares of an n X 2 array with new integer colors introduced in row major order.

Original entry on oeis.org

1, 2, 3, 10, 27, 114, 409, 2066, 9089, 52922, 272947, 1788850, 10515147, 76282138, 501178937, 3974779402, 28773452321, 247083681522, 1949230218691, 17984917069018, 153281759047387, 1510073008031682, 13806215066685433
Offset: 1

Views

Author

R. H. Hardin, Sep 04 2012

Keywords

Comments

Number of vertex covers and independent vertex sets of the n-1 X n-1 black bishops graph. Equivalently, the number of ways to place any number of non-attacking bishops on the black squares of an n-1 X n-1 board. - Andrew Howroyd, May 08 2017

Examples

			Some solutions for n=5:
..0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x....0..x
..x..1....x..1....x..1....x..0....x..1....x..1....x..0....x..1....x..1....x..0
..0..x....2..x....2..x....1..x....2..x....2..x....1..x....2..x....0..x....1..x
..x..2....x..0....x..1....x..2....x..1....x..0....x..1....x..0....x..1....x..2
..3..x....3..x....3..x....0..x....2..x....1..x....0..x....2..x....0..x....3..x
There are 5 black squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 5 ways to place 1 and 4 ways to place 2 so a(4)=1+5+4=10. - _Andrew Howroyd_, Jun 06 2017
		

Crossrefs

Column 2 of A216338.
Row sums of A274105(n-1) for n>2.

Programs

  • Mathematica
    Table[Sum[Binomial[Ceiling[n/2], k] BellB[n - k], {k, 0, Ceiling[n/2]}], {n, 0, 20}] (* Eric W. Weisstein, Jun 25 2017 *)

A288183 Triangle read by rows: T(n,k) = number of arrangements of k non-attacking bishops on the black squares of an n X n board with every square controlled by at least one bishop.

Original entry on oeis.org

2, 1, 4, 0, 4, 4, 0, 0, 22, 8, 0, 0, 16, 64, 8, 0, 0, 6, 128, 228, 16, 0, 0, 0, 72, 784, 528, 16, 0, 0, 0, 0, 1056, 4352, 1688, 32, 0, 0, 0, 0, 432, 9072, 18336, 3584, 32, 0, 0, 0, 0, 120, 7776, 76488, 87168, 11024, 64, 0, 0, 0, 0, 0, 2880, 109152, 484416, 313856, 22592, 64
Offset: 2

Views

Author

Andrew Howroyd, Jun 06 2017

Keywords

Comments

See A146304 for algorithm and PARI code to produce this sequence.
Equivalently, the coefficients of the maximal independent set polynomials on the n X n black bishop graph.
The product of the first nonzero term in each row of this sequence and that of A288182 give A122749.

Examples

			Triangle begins:
  2;
  1, 4;
  0, 4,  4;
  0, 0, 22,   8;
  0, 0, 16,  64,    8;
  0, 0,  6, 128,  228,   16;
  0, 0,  0,  72,  784,  528,    16;
  0, 0,  0,   0, 1056, 4352,  1688,    32;
  0, 0,  0,   0,  432, 9072, 18336,  3584,    32;
  0, 0,  0,   0,  120, 7776, 76488, 87168, 11024,  64;
  ...
The first term is T(2,1) = 2.
		

Crossrefs

Row sums are A290594.

A088960 Triangle read by rows: T(n,k) = number of configurations of k non-attacking bishops on the white squares of an n X n chessboard (for n even, 0 <= k < n).

Original entry on oeis.org

1, 2, 1, 8, 14, 4, 1, 18, 98, 184, 100, 8, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 72, 2050, 29900, 242292, 1109184, 2800016, 3653280, 2180656, 474368, 23264, 64
Offset: 2

Views

Author

Brant Jones (brant(AT)math.washington.edu), Oct 28 2003

Keywords

Examples

			T(4,1) = 8 because there are 8 white squares on the 4 X 4 board to put one bishop; T(4,3) = 4 because we must place one bishop on each of three principal diagonal lines, which can be accomplished in 2*1*2=4 ways.
Triangle begins:
1, 2
1, 8, 14, 4
1, 18, 98, 184, 100, 8
1, 32, 356, 1704, 3532, 2816, 632, 16
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1997; see section 2.4.

Programs

  • Mathematica
    T[n_, k_] := (Sum[(-1)^j*Binomial[n - k - 1, j]/(n - k - 1)!*(n - k + 1 - j)^(n/2)*(n - k - j)^(n/2 - 1), {j, 0, n - k - 1}]); Flatten[Table[T[n, k], {n, 2, 12, 2}, {k, 0, n - 1}]] (* Vaclav Kotesovec, Mar 24 2011 *)

Formula

Generating function for fixed n = rook polynomial of Ferrers board with shape (2, 2, 4, 4, 6, 6, 8, 8, ..., (n-2), (n-2), n)

A274106 Triangle read by rows: T(n,k) = total number of configurations of k nonattacking bishops on the white squares of an n X n chessboard (0 <= k <= n-1+[n=0]).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 2, 1, 8, 14, 4, 1, 12, 38, 32, 4, 1, 18, 98, 184, 100, 8, 1, 24, 188, 576, 652, 208, 8, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2016

Keywords

Comments

From Eder G. Santos, Dec 16 2024: (Start)
The sequence counts every possible nonattacking configuration of k bishops on the white squares of an n X n chess board.
It is assumed that the n X n chess board has a black square in the upper left corner.
(End)

Examples

			Triangle begins:
  1;
  1;
  1,  2;
  1,  4,    2;
  1,  8,   14,     4;
  1, 12,   38,    32,     4;
  1, 18,   98,   184,   100,      8;
  1, 24,  188,   576,   652,    208,      8;
  1, 32,  356,  1704,  3532,   2816,    632,     16;
  1, 40,  580,  3840, 12052,  16944,   9080,   1280,     16;
  1, 50,  940,  8480, 38932,  89256,  93800,  37600,   3856,   32;
  1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32;
  ...
From _Eder G. Santos_, Dec 16 2024: (Start)
For example, for n = 3, k = 2, the T(3,2) = 2 nonattacking configurations are:
  +---+---+---+   +---+---+---+
  |   | B |   |   |   |   |   |
  +---+---+---+   +---+---+---+
  |   |   |   | , | B |   | B |
  +---+---+---+   +---+---+---+
  |   | B |   |   |   |   |   |
  +---+---+---+   +---+---+---+
(End)
		

Crossrefs

Columns k=0-1 give: A000012, A007590.
Alternate rows give A088960.
Row sums are A216078(n+1).
T(2n,n) gives A191236.
T(2n+1,n) gives A217900(n+1).
T(n+1,n) gives A060546.
Cf. A274105 (black squares), A288182, A201862, A002465.

Programs

  • Maple
    with(combinat): with(gfun):
    T := n -> add(stirling2(n+1,n+1-k)*x^k, k=0..n):
    # bishops on white squares
    bish := proc(n) local m,k,i,j,t1,t2; global T;
        if n=0 then return [1] fi;
        if (n mod 2) = 0 then m:=n/2;
            t1:=add(binomial(m,k)*T(2*m-1-k)*x^k, k=0..m);
        else
            m:=(n-1)/2;
            t1:=add(binomial(m,k)*T(2*m-k)*x^k, k=0..m+1);
        fi;
        seriestolist(series(t1,x,2*n+1));
    end:
    for n from 0 to 12 do lprint(bish(n)); od:
  • Mathematica
    T[n_] := Sum[StirlingS2[n+1, n+1-k]*x^k, {k, 0, n}];
    bish[n_] := Module[{m, t1, t2}, If[Mod[n, 2] == 0,
       m = n/2;     t1 = Sum[Binomial[m, k]*T[2*m-1-k]*x^k, {k, 0, m}],
       m = (n-1)/2; t1 = Sum[Binomial[m, k]*T[2*m - k]*x^k, {k, 0, m+1}]];
    CoefficientList[t1 + O[x]^(2*n+1), x]];
    Table[bish[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 25 2022, after Maple code *)
  • SageMath
    def stirling2_negativek(n, k):
      if k < 0: return 0
      else: return stirling_number2(n, k)
    print([sum([binomial(floor(n/2), j)*stirling2_negativek(n-j, n-k) for j in [0..k]]) for n in [0..10] for k in [0..n-1+kronecker_delta(n,0)]]) # Eder G. Santos, Dec 01 2024

Formula

From Eder G. Santos, Dec 01 2024: (Start)
T(n,k) = Sum_{j=0..k} binomial(floor(n/2),j) * Stirling2(n-j,n-k).
T(n,k) = T(n-1,k) + (n-k+1-A000035(n)) * T(n-1,k-1), T(n,0) = 1, T(0,k) = delta(k,0). (End)

Extensions

T(0,0) prepended by Eder G. Santos, Dec 01 2024

A297195 Number of bitriangular permutations (row sums of A272644 if that triangle is prefixed with two rows for n=0,1).

Original entry on oeis.org

1, 0, 1, 2, 7, 28, 133, 726, 4483, 30896, 235105, 1957930, 17712799, 172980804, 1813760317, 20323234814, 242353047355, 3064550705752, 40958281206169, 576917769130578, 8541793624670551, 132623408805525740, 2154730841214003061, 36560670776303600422, 646697046042017004787
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2018

Keywords

Comments

Define c(n) = Sum_{m=2..n-1} C(n-1, m-1)^(-2). Define b(1) = x and b(n+1) = b(n) + (Sum_{m=2..n-1} b(m)*b(n+1-m)*C(n-1, m-1)^(-2))/n^2 for n>0. Then b(n) is a polynomial in x and so is (b(n+1)-b(n))/x^2 whose constant term is c(n)/n^2. The Hone et.al.[2002] link denotes x with alpha_2 and alpha_k = (k-1)!^2*b(k). Conjecture: Asymptotic expansion of c(n) = 2*Sum_{i>1} a(i)/n^i. - Michael Somos, Oct 17 2024

Examples

			G.f. = 1 + x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 133*x^6 + 726*x^7 + ... - _Michael Somos_, Oct 17 2024
		

Crossrefs

Cf. A272644.

Programs

  • Maple
    A297195 := proc(n)
        add(A272644(n, m), m=0..n) ;
    end proc:
    seq(A297195(n), n=0..30) ; # R. J. Mathar, Mar 04 2018
  • Mathematica
    A272644[n_, m_] := Sum[StirlingS2[m+1, i+1] (-1)^(m-i) i^(n-m) i!, {i, 0, m}];
    a[n_] := If[n == 1, 1, Sum[A272644[n, m], {m, 1, n-1}]];
    Array[a, 24] (* Jean-François Alcover, Apr 03 2020 *)
  • PARI
    {a(n) = if(n<2, n==0, sum(m=1, n-1, sum(i=0, m, (-1)^(m-i)*i^(n-m)*i!*stirling(m+1, i+1, 2))))}; /* Michael Somos, Oct 17 2024 */

Extensions

Some terms corrected by Alois P. Heinz, Oct 17 2024

A272643 Irregular triangle read by rows, enumerating permutations of "specification (321^{n-5})".

Original entry on oeis.org

1, 6, 3, 1, 17, 33, 9, 1, 40, 184, 168, 27, 1, 87, 792, 1592, 807, 81
Offset: 5

Views

Author

N. J. A. Sloane, May 07 2016

Keywords

Comments

Related to Simon Newcomb's problem.
It would be nice to have a more precise definition. See Kaplansky-Riordan, Section 7.

Examples

			The triangle starts at row n=5:
1, 6, 3,
1, 17, 33, 9,
1, 40, 184, 168, 27,
1, 87, 792, 1592, 807, 81,
...
		
Showing 1-8 of 8 results.