cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A297195 Number of bitriangular permutations (row sums of A272644 if that triangle is prefixed with two rows for n=0,1).

Original entry on oeis.org

1, 0, 1, 2, 7, 28, 133, 726, 4483, 30896, 235105, 1957930, 17712799, 172980804, 1813760317, 20323234814, 242353047355, 3064550705752, 40958281206169, 576917769130578, 8541793624670551, 132623408805525740, 2154730841214003061, 36560670776303600422, 646697046042017004787
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2018

Keywords

Comments

Define c(n) = Sum_{m=2..n-1} C(n-1, m-1)^(-2). Define b(1) = x and b(n+1) = b(n) + (Sum_{m=2..n-1} b(m)*b(n+1-m)*C(n-1, m-1)^(-2))/n^2 for n>0. Then b(n) is a polynomial in x and so is (b(n+1)-b(n))/x^2 whose constant term is c(n)/n^2. The Hone et.al.[2002] link denotes x with alpha_2 and alpha_k = (k-1)!^2*b(k). Conjecture: Asymptotic expansion of c(n) = 2*Sum_{i>1} a(i)/n^i. - Michael Somos, Oct 17 2024

Examples

			G.f. = 1 + x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 133*x^6 + 726*x^7 + ... - _Michael Somos_, Oct 17 2024
		

Crossrefs

Cf. A272644.

Programs

  • Maple
    A297195 := proc(n)
        add(A272644(n, m), m=0..n) ;
    end proc:
    seq(A297195(n), n=0..30) ; # R. J. Mathar, Mar 04 2018
  • Mathematica
    A272644[n_, m_] := Sum[StirlingS2[m+1, i+1] (-1)^(m-i) i^(n-m) i!, {i, 0, m}];
    a[n_] := If[n == 1, 1, Sum[A272644[n, m], {m, 1, n-1}]];
    Array[a, 24] (* Jean-François Alcover, Apr 03 2020 *)
  • PARI
    {a(n) = if(n<2, n==0, sum(m=1, n-1, sum(i=0, m, (-1)^(m-i)*i^(n-m)*i!*stirling(m+1, i+1, 2))))}; /* Michael Somos, Oct 17 2024 */

Extensions

Some terms corrected by Alois P. Heinz, Oct 17 2024

A272645 a(n) = largest term in row n of array in A272644.

Original entry on oeis.org

1, 1, 5, 13, 73, 301, 2069, 11581, 95401, 673261, 6487445, 55213453, 610093513, 6077248381, 75796724309, 864806272861, 12020754177001, 154546274524621, 2369364111428885, 33888536448984493, 568128719132038153, 8947078682269788061
Offset: 2

Views

Author

N. J. A. Sloane, May 07 2016

Keywords

Crossrefs

Cf. A272644.

Programs

  • PARI
    A(n,m) = sum(i=0, m, stirling(m+1, i+1, 2) * (-1)^((m-i)%2) * i^(n - m) * i!);
    apply(vecmax, vector(22, n, vector(n, m, A(n+1, m))))  \\ Gheorghe Coserea, May 16 2016

Formula

See A272644.

Extensions

More terms from Gheorghe Coserea, May 16 2016

A048144 a(n) = Sum_{k=0..n} (k!)^2 * Stirling_2(n,k)^2.

Original entry on oeis.org

1, 1, 5, 73, 2069, 95401, 6487445, 610093513, 75796724309, 12020754177001, 2369364111428885, 568128719132038153, 162835627057766030549, 54975855375379966645801, 21593185551426744571090325, 9762238510837560633366673993, 5033241437347149354018370856789
Offset: 0

Views

Author

Keywords

Comments

Number of digraphs with loops, with labeled vertices and labeled arcs, with n arcs and with no vertex of indegree 0 or outdegree 0, cf. A121936, A122418, A122399. - Vladeta Jovovic, Sep 06 2006
Chromatic invariant of the complete bipartite graph K_{n+1,n+1}. - Eric W. Weisstein, Jul 11 2011
Generally, for p >= 1, Sum_{k=0..n} (k!*StirlingS2(n,k))^p is asymptotic to n^(p*n+1/2) * sqrt(Pi/(2*p*(1-log(2))^(p-1))) / (exp(p*n) * log(2)^(p*n+1)). - Vaclav Kotesovec, May 10 2014

Crossrefs

Programs

  • Maple
    a := proc(n) local A, j; A := proc(n, k) option remember; if n = 0 then n^k else add(binomial(k + `if`(j>0, 1, 0), j+1) * A(n-1, k-j), j = 0..k) fi end: A(n,n) end:
    seq(a(n), n = 0..16);  # Peter Luschny, Nov 20 2024
  • Mathematica
    Table[Sum[(k!)^2*StirlingS2[n,k]^2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 07 2014 *)
  • PARI
    a(n) = sum(k=0, n, k!^2*stirling(n, k, 2)^2); \\ Michel Marcus, Mar 07 2020
    
  • Python
    from functools import cache
    from math import comb as binomial
    @cache
    def A(n, k): return int(k == 0) if n == 0 else sum(binomial(k + int(j > 0), j + 1) * A(n - 1, k - j) for j in range(k + 1))
    a = lambda n: A(n, n)
    print([a(n) for n in range(17)])  # Peter Luschny, Nov 20 2024

Formula

E.g.f.: Sum_{n>=0} Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*(exp(j*x)-1)^n. a(n) = Sum_{k=0..n} Stirling2(n,k)*k!*A104602(k). - Vladeta Jovovic, Mar 25 2006
a(n) ~ sqrt(Pi/(1-log(2))) * n^(2*n+1/2) / (2*exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, May 09 2014
E.g.f.: Sum_{n>=0} (1 - exp(-n*x))^n * exp(-n*x). - Paul D. Hanna, Mar 26 2018
E.g.f.: Sum_{n>=0} (exp(n*x) - 1)^n * exp(-n*(n+1)*x). - Paul D. Hanna, Mar 26 2018
a(n) = A272644(2n,n). - Alois P. Heinz, Oct 17 2024
a(n) = A371761(n, n). - Peter Luschny, Nov 20 2024
a(n) = (n!)^2 * [(x*y)^n] 1 / (exp(x) + exp(y) - exp(x + y)). - Ilya Gutkovskiy, Apr 24 2025

A371761 Array read by antidiagonals: The number of parades with n girls and k boys that begin with a girl and end with a boy.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 5, 1, 0, 0, 1, 13, 13, 1, 0, 0, 1, 29, 73, 29, 1, 0, 0, 1, 61, 301, 301, 61, 1, 0, 0, 1, 125, 1081, 2069, 1081, 125, 1, 0, 0, 1, 253, 3613, 11581, 11581, 3613, 253, 1, 0, 0, 1, 509, 11593, 57749, 95401, 57749, 11593, 509, 1, 0
Offset: 0

Views

Author

Peter Luschny, Apr 05 2024

Keywords

Comments

The name derives from a proposition by Donald Knuth, who describes the setup of a "girls and boys parade" as follows: "There are m girls {g_1, ..., g_m} and n boys {b_1, ..., b_n}, where g_i is younger than g_{i+1} and b_j is younger than b_{j+1}, but we know nothing about the relative ages of g_i and b_j. In how many ways can they all line up in a sequence such that no girl is directly preceded by an older girl and no boy is directly preceded by an older boy?" [Our notation: A <- D, n <- m, k <- n].
In A344920, the Worpitzky transform is defined as a sequence-to-sequence transformation WT := A -> B, where B(n) = Sum_{k=0..n} A163626(n, k)*A(k). (If A(n) = 1/(n + 1) then B(n) are the Bernoulli numbers (with B(1) = 1/2.)) The rows of the array are the Worpitzky transforms of the powers up to the sign (-1)^k.
The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the rows of A004248. This makes the array closely linked to A344499, which is generated in the same way, but applied to the columns of A004248.
Conjecture: Row n + 1 is row 2^n in table A136301, where a probabilistic interpretation is given (see the link to Parsonnet's paper below).

Examples

			Array starts:
[0] 1, 0,   0,     0,      0,       0,        0,         0,          0, ...
[1] 0, 1,   1,     1,      1,       1,        1,         1,          1, ...
[2] 0, 1,   5,    13,     29,      61,      125,       253,        509, ...
[3] 0, 1,  13,    73,    301,    1081,     3613,     11593,      36301, ...
[4] 0, 1,  29,   301,   2069,   11581,    57749,    268381,    1191989, ...
[5] 0, 1,  61,  1081,  11581,   95401,   673261,   4306681,   25794781, ...
[6] 0, 1, 125,  3613,  57749,  673261,  6487445,  55213453,  431525429, ...
[7] 0, 1, 253, 11593, 268381, 4306681, 55213453, 610093513, 6077248381, ...
.
Seen as triangle T(n, k) = A(n - k, k):
  [0] 1;
  [1] 0, 0;
  [2] 0, 1,  0;
  [3] 0, 1,  1,   0;
  [4] 0, 1,  5,   1,   0;
  [5] 0, 1, 13,  13,   1,  0;
  [6] 0, 1, 29,  73,  29,  1, 0;
  [7] 0, 1, 61, 301, 301, 61, 1, 0;
.
A(n, k) as sum of powers:
  A(2, k) =  -3+   2*2^k;
  A(3, k) =   7-  12*2^k+    6*3^k;
  A(4, k) = -15+  50*2^k-   60*3^k+   24*4^k;
  A(5, k) =  31- 180*2^k+  390*3^k-  360*4^k+  120*5^k;
  A(6, k) = -63+ 602*2^k- 2100*3^k+ 3360*4^k- 2520*5^k+  720*6^k;
  A(7, k) = 127-1932*2^k+10206*3^k-25200*4^k+31920*5^k-20160*6^k+5040*7^k;
		

Crossrefs

Variant: A272644.
Rows include: A344920 (row 2, signed), A006230 (row 3).
Row sums of triangle (n>=2): A297195, alternating row sums: A226158.
Diagonal of array: A048144.

Programs

  • Maple
    egf := 1/(exp(w) + exp(z) - exp(w + z)): serw := n -> series(egf, w, n + 1):
    # Returns row n (>= 0) with length len (> 0):
    R := n -> len -> local k;
    seq(k!*coeff(series(n!*coeff(serw(n), w, n), z, len), z, k), k = 0..len - 1):
    seq(lprint(R(n)(9)), n = 0..7);
    # Explicit with Stirling2 :
    A := (n, k) -> local j; add(j!^2*Stirling2(n, j)*Stirling2(k, j), j = 0..min(n, k)): seq(lprint(seq(A(n, k), k = 0..8)), n = 0..7);
    # Using the unsigned Worpitzky transform.
    WT := (a, len) -> local n, k;
    seq(add((-1)^(n - k)*k!*Stirling2(n + 1, k + 1)*a(k), k=0..n), n = 0..len-1):
    Arow := n -> WT(x -> x^n, 8): seq(lprint(Arow(n)), n = 0..8);
    # Two recurrences:
    A := proc(n, k) option remember; local j; if k = 0 then return k^n fi;
    add(binomial(n, j)*(A(n-j, k-1) + A(n-j+1, k-1)), j = 1..n) end:
    A := proc(n, k) option remember; local j; if n = 0 then 0^k else
    add(binomial(k + `if`(j=0,0,1), j+1)*A(n-1, k-j), j = 0..k) fi end:
  • Mathematica
    (* Using the unsigned Worpitzky transform. *)
    Unprotect[Power]; Power[0, 0] = 1;
    W[n_, k_] := (-1)^(n - k) k! StirlingS2[n + 1, k + 1];
    WT[a_, len_] := Table[Sum[W[n, k] a[k], {k, 0, n}], {n, 0, len-1}];
    A371761row[n_, len_] := WT[#^n &, len];
    Table[A371761row[n, 9], {n, 0, 8}] // MatrixForm
    (* Row n >= 1 by linear recurrence: *)
    RowByLRec[n_, len_] := LinearRecurrence[Table[-StirlingS1[n+1, n+1-k], {k, 1, n}],
    A371761row[n, n+1], len]; Table[RowByLRec[n, 9], {n, 1, 8}] // MatrixForm
  • Python
    from functools import cache
    from math import comb as binomial
    @cache
    def A(n, k):
        if n == 0: return int(k == 0)
        return sum(binomial(k + int(j > 0), j + 1) * A(n - 1, k - j)
               for j in range(k + 1))
    for n in range(8): print([A(n, k) for k in range(8)])
    
  • Python
    # The Akiyama-Tanigawa algorithm for powers generates the rows.
    def ATPowList(n, len):
        A = [0] * len
        R = [0] * len
        for k in range(len):
            R[k] = k**n   # Changing this to R[k] = (n + 1)**k generates A344499.
            for j in range(k, 0, -1):
                R[j - 1] = j * (R[j] - R[j - 1])
            A[k] = R[0]
        return A
    for n in range(8): print([n], ATPowList(n, 9))
  • SageMath
    def A371761(n, k): return sum((-1)^(j - k) * factorial(j) * stirling_number2(k + 1, j + 1) * j^n for j in range(k + 1))
    for n in range(9): print([A371761(n, k) for k in range(8)])
    

Formula

A(n, k) = k! * [z^k] (n! * [w^n] 1/(exp(w) + exp(z) - exp(w + z))).
A(n, k) = k! * [w^k] (Sum_{j=0..n} A075263(n, n - j) * exp(j*w)).
A(n, k) = Sum_{j=0..k} (-1)^(j-k) * Stirling2(k + 1, j + 1) * j! * j^n.
A(n, k) = Sum_{j=0..min(n,k)} (j!)^2 * Stirling2(n, j) * Stirling2(k, j).
A(n, k) = Sum_{j=0..n} (-1)^(n-j)*A028246(n, j) * j^k; this is explicit:
A(n, k) = Sum_{j=0..n} Sum_{m=0..n} binomial(n-m, n-j) * Eulerian1(n, m) * j^k *(-1)^(n-j), where Eulerian1 = A173018.
A(n, k) = Sum_{j=0..k} binomial(k + [j>0], j+1)*A(n-1, k-j) for n > 0.
A(n, k) = Sum_{j=1..n} binomial(n, j)*(A(n-j, k-1) + A(n-j+1, k-1)) for n,k >= 1.
Row n (>=1) satisfies a linear recurrence:
A(n, k) = -Sum_{j=1..n} Stirling1(n + 1, n + 1 - j)*A(n, k - j) if k > n.
A(n, k) = [x^k] (Sum_{j=0..n} A371762(n, j)*x^j) / (Sum_{j=0..n} Stirling1(n + 1, n + 1 - j)*x^j).
A(n, k) = A(k, n). (From the symmetry of the bivariate exponential g.f.)
Let T(n, k) = A(n - k, k) and G(n) = Sum_{k=0..n} (-1)^k*T(n, k) the alternating row sums of the triangle. Then G(n) = (n + 2)*Euler(n + 1, 1) and as shifted Genocchi numbers G(n) = -2*(n + 2)*PolyLog(-n - 1, -1) = -A226158(n + 2).

A100754 Triangle read by rows: T(n, k) = number of hill-free Dyck paths (i.e., no peaks at height 1) of semilength n and having k peaks.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 29, 13, 1, 1, 19, 73, 73, 19, 1, 1, 26, 151, 266, 151, 26, 1, 1, 34, 276, 749, 749, 276, 34, 1, 1, 43, 463, 1781, 2762, 1781, 463, 43, 1, 1, 53, 729, 3758, 8321, 8321, 3758, 729, 53, 1, 1, 64, 1093, 7253, 21659, 31004, 21659, 7253, 1093, 64, 1
Offset: 2

Views

Author

Emeric Deutsch, Jan 14 2005

Keywords

Comments

Row n has n - 1 terms. Row sums yield the Fine numbers (A000957).
Related to the number of certain sets of non-crossing partitions for the root system A_n (p. 11, Athanasiadis and Savvidou). - Tom Copeland, Oct 19 2014
T(n,k) is the number of permutations pi of [n-1] with k - 1 descents such that s(pi) avoids the patterns 132, 231, and 312, where s is West's stack-sorting map. - Colin Defant, Sep 16 2018
The absolute values of the polynomials at -1 and j (cube root of 1) seem to be given by A126120 and A005043. - F. Chapoton, Nov 16 2021
Don Knuth observes that this sequence also arrises from the enumeration of restricted max-and-min-closed relations, only there it appears as an array read by antidiagonals: see the Knuth "Notes" link and A372068. Knuth also gives a formula expressing the array A372368 in terms of this array. He also reports that there is strong experimental evidence that the n-th term of row m in this array is a polynomial of degree 2*m-2 in n. - N. J. A. Sloane, May 12 2024

Examples

			T(4, 2) = 4 because we have UU*DDUU*DD, UU*DUU*DDD, UUU*DDU*DD and UUU*DU*DDD, where U = (1, 1), D = (1,-1) and * indicates the peaks.
Triangle starts:
   1;
   1,  1;
   1,  4,   1;
   1,  8,   8,    1;
   1, 13,  29,   13,    1;
   1, 19,  73,   73,   19,    1;
   1, 26, 151,  266,  151,   26,    1;
   1, 34, 276,  749,  749,  276,   34,   1;
   1, 43, 463, 1781, 2762, 1781,  463,  43,  1;
   1, 53, 729, 3758, 8321, 8321, 3758, 729, 53, 1;
   ...
As an array (for which the rows of the preceding triangle are the antidiagonals):
   1,  1,    1,     1,      1,      1,       1,        1,        1, ...
   1,  4,    8,    13,     19,     26,      34,       43,       53, ...
   1,  8,   29,    73,    151,    276,     463,      729,     1093, ...
   1, 13,   73,   266,    749,   1781,    3758,     7253,    13061, ...
   1, 19,  151,   749,   2762,   8321,   21659,    50471,   107833, ...
   1, 26,  276,  1781,   8321,  31004,   97754,   271125,   679355, ...
   1, 34,  463,  3758,  21659,  97754,  367285,  1196665,  3478915, ...
   1, 43,  729,  7253,  50471, 271125, 1196665,  4526470, 15118415, ...
   1, 53, 1093, 13061, 107833, 679355, 3478915, 15118415, 57500480, ...
   ...
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> add((j/(n-j))*binomial(n-j, k-j)*binomial(n-j,k), j=0..min(k,n-k)): for n from 2 to 13 do seq(T(n, k), k = 1..n-1) od; # yields the sequence in triangular form
  • Mathematica
    T[n_, k_] := Sum[(j/(n-j))*Binomial[n-j, k-j]*Binomial[n-j, k], {j, 0, Min[k, n-k]}]; Table[T[n, k], {n, 2, 13}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)

Formula

T(n, k) = Sum_{j=0..min(k, n-k)} (j/(n-j)) * C(n-j, k-j) * C(n-j, k), n >= 2.
G.f.: t*z*r/(1 - t*z*r), where r = r(t, z) is the Narayana function defined by r = z*(1 + r)*(1 + t*r).
From Tom Copeland, Oct 19 2014: (Start)
With offset 0 for A108263 and offset 1 for A132081, row polynomials of this entry P(n, x) = Sum_{i} A108263(n, i)*x^i*(1 + x)^(n - 2*i) = Sum_{i} A132081(n - 2, i)*x^i*(1 + x)^(n - 2*i).
E.g., P(4, x) = 1*x*(1 + x)^(4 - 2*1) + 2*x^2*(1 + x)^(4 - 2*2) = x + 4*x^2 + x^3.
Equivalently, let Q(n, x) be the row polynomials of A108263. Then P(n, x) = (1 + x)^n * Q(n, x/(1 + x)^2).
E.g., P(4, x) = (1 + x)^4 * (x/(1 + x)^2 + 2 * (x/(1 + x)^2)^2).
See Athanasiadis and Savvidou (p. 7). (End)

A382740 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] (1/2) * (1 / (exp(x) + exp(y) - exp(x+y))^2 - 1).

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 19, 19, 1, 1, 43, 127, 43, 1, 1, 91, 559, 559, 91, 1, 1, 187, 2071, 4327, 2071, 187, 1, 1, 379, 7039, 25831, 25831, 7039, 379, 1, 1, 763, 22807, 133783, 233551, 133783, 22807, 763, 1, 1, 1531, 71839, 636679, 1748791, 1748791, 636679, 71839, 1531, 1
Offset: 1

Views

Author

Seiichi Manyama, Apr 04 2025

Keywords

Examples

			Square array begins:
  1,   1,    1,      1,       1,        1, ...
  1,   7,   19,     43,      91,      187, ...
  1,  19,  127,    559,    2071,     7039, ...
  1,  43,  559,   4327,   25831,   133783, ...
  1,  91, 2071,  25831,  233551,  1748791, ...
  1, 187, 7039, 133783, 1748791, 18207367, ...
		

Crossrefs

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*stirling(n, j, 2)*stirling(k, j, 2))/2;

Formula

E.g.f.: (1/2) * (1 / (exp(x) + exp(y) - exp(x+y))^2 - 1).
A(n,k) = A(k,n).
A(n,k) = (1/2) * A382734(n,k).

A382741 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] (1/3) * (1 / (exp(x) + exp(y) - exp(x+y))^3 - 1).

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 25, 25, 1, 1, 57, 193, 57, 1, 1, 121, 889, 889, 121, 1, 1, 249, 3361, 7593, 3361, 249, 1, 1, 505, 11545, 47641, 47641, 11545, 505, 1, 1, 1017, 37633, 253737, 465601, 253737, 37633, 1017, 1, 1, 2041, 118969, 1228249, 3657721, 3657721, 1228249, 118969, 2041, 1
Offset: 1

Views

Author

Seiichi Manyama, Apr 04 2025

Keywords

Examples

			Square array begins:
  1,   1,     1,      1,       1,        1, ...
  1,   9,    25,     57,     121,      249, ...
  1,  25,   193,    889,    3361,    11545, ...
  1,  57,   889,   7593,   47641,   253737, ...
  1, 121,  3361,  47641,  465601,  3657721, ...
  1, 249, 11545, 253737, 3657721, 40666089, ...
		

Crossrefs

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*stirling(n, j, 2)*stirling(k, j, 2))/3;

Formula

E.g.f.: (1/3) * (1 / (exp(x) + exp(y) - exp(x+y))^3 - 1).
A(n,k) = A(k,n).
A(n,k) = (1/3) * A382735(n,k).

A372068 Array read by antidiagonals: T(m,n) (m >= 0, n >= 0) = number of max-and-min-closed constraints between an m-element set and an n-element set.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 13, 8, 1, 1, 16, 38, 38, 16, 1, 1, 32, 104, 147, 104, 32, 1, 1, 64, 272, 506, 506, 272, 64, 1, 1, 128, 688, 1612, 2103, 1612, 688, 128, 1, 1, 256, 1696, 4856, 7887, 7887, 4856, 1696, 256, 1, 1, 512, 4096, 14016, 27477, 34088, 27477, 14016, 4096, 512, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2024, based on emails from Don Knuth, May 06 2024 and May 08 2024

Keywords

Comments

See the Knuth "Notes" link for much more information about these sequences. The present sequence is called "tab" in Part 2 of the Notes.

Examples

			The initial antidiagonals are:
   1,
   1, 1,
   1, 2, 1,
   1, 4, 4, 1,
   1, 8, 13, 8, 1,
   1, 16, 38, 38, 16, 1,
   1, 32, 104, 147, 104, 32, 1,
   1, 64, 272, 506, 506, 272, 64, 1,
   1, 128, 688, 1612, 2103, 1612, 688, 128, 1,
   1, 256, 1696, 4856, 7887, 7887, 4856, 1696, 256, 1,
   1, 512, 4096, 14016, 27477, 34088, 27477, 14016, 4096, 512, 1,
   ...
The array begins:
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ...
   1, 4, 13, 38, 104, 272, 688, 1696, 4096, 9728, ...
   1, 8, 38, 147, 506, 1612, 4856, 14016, 39104, 106112, ...
   1, 16, 104, 506, 2103, 7887, 27477, 90498, 285072, 865856, ...
   1, 32, 272, 1612, 7887, 34088, 134825, 498465, 1746830, 5859404, ...
   1, 64, 688, 4856, 27477, 134825, 597539, 2451038, 9455182, 34687916, ...
   1, 128, 1696, 14016, 90498, 498465, 2451038, 11055950, 46570858, 185484836, ...
   1, 256, 4096, 39104, 285072, 1746830, 9455182, 46570858, 212833803, 914854829, ...
   1, 512, 9728, 106112, 865856, 5859404, 34687916, 185484836, 914854829, 4223468802, ...
   ...
		

Crossrefs

A382742 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] (1/4) * (1 / (exp(x) + exp(y) - exp(x+y))^4 - 1).

Original entry on oeis.org

1, 1, 1, 1, 11, 1, 1, 31, 31, 1, 1, 71, 271, 71, 1, 1, 151, 1291, 1291, 151, 1, 1, 311, 4951, 12011, 4951, 311, 1, 1, 631, 17131, 78451, 78451, 17131, 631, 1, 1, 1271, 56071, 426971, 820351, 426971, 56071, 1271, 1, 1, 2551, 177691, 2093491, 6709651, 6709651, 2093491, 177691, 2551, 1
Offset: 1

Views

Author

Seiichi Manyama, Apr 04 2025

Keywords

Examples

			Square array begins:
  1,   1,     1,      1,       1,        1, ...
  1,  11,    31,     71,     151,      311, ...
  1,  31,   271,   1291,    4951,    17131, ...
  1,  71,  1291,  12011,   78451,   426971, ...
  1, 151,  4951,  78451,  820351,  6709651, ...
  1, 311, 17131, 426971, 6709651, 79008011, ...
		

Crossrefs

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+3, 3)*stirling(n, j, 2)*stirling(k, j, 2))/4;

Formula

E.g.f.: (1/4) * (1 / (exp(x) + exp(y) - exp(x+y))^4 - 1).
A(n,k) = A(k,n).
A(n,k) = (1/4) * A382736(n,k).
Showing 1-9 of 9 results.