cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A189358 Number of permutations p of 1,2,...,n satisfying |p(i+1)-p(i)|<>3 and |p(j+3)-p(j)|<>1 for all i=1..n-1, j=1..n-3.

Original entry on oeis.org

1, 1, 2, 6, 8, 24, 126, 524, 3072, 22854, 189646, 1827114, 19889946, 238648524, 3131979014, 44540692612, 681114241416, 11136984461270
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2011

Keywords

Comments

a(n) is also the number of ways to place n nonattacking pieces rook + leaper[1,3] on an n X n chessboard (in fairy chess the leaper[1,3] is called a camel).

Crossrefs

Cf. A137774.

Programs

  • Mathematica
    A189358[n_] := Module[{p, c = 0, i = 1, q},
       p=Permutations[Range[n]]; While[i <= Length[p], q = p[[i]]; i++;
        If[AllTrue[Range[n - 1], Abs[q[[# + 1]] - q[[#]]] != 3 &] &&
           AllTrue[Range[n - 3], Abs[q[[# + 3]] - q[[#]]] != 1 &], c++]]; c];
    Table[A189358[n], {n, 0, 9}]  (* Robert Price, Apr 04 2019 *)

Formula

Asymptotic: a(n)/n! ~ 1/e^4.

Extensions

a(17) from Alois P. Heinz, Mar 19 2017

A189563 Number of permutations p of 1,2,...,n satisfying |p(i+1)-p(i)|<>4 and |p(j+4)-p(j)|<>1 for all i=1..n-1, j=1..n-4.

Original entry on oeis.org

1, 1, 2, 6, 24, 48, 182, 868, 5752, 37156, 296944, 2738820, 28894206, 335399468, 4285522402, 59536763892, 892785282788
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2011

Keywords

Comments

a(n) is also the number of ways to place n nonattacking pieces rook + leaper[1,4] on an n X n chessboard (in fairy chess the leaper[1,4] is called a giraffe).

Crossrefs

Formula

Asymptotic: a(n)/n! ~ 1/e^4.

A189564 Number of permutations p of 1,2,...,n satisfying |p(i+1)-p(i)|<>5 and |p(j+5)-p(j)|<>1 for all i=1..n-1, j=1..n-5.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 336, 1474, 8340, 57756, 475658, 4171070, 41950294, 472535256, 5882635676, 79963449714, 1173614446044
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2011

Keywords

Comments

a(n) is also the number of ways to place n nonattacking pieces rook + leaper[1,5] on an n X n chessboard.

Crossrefs

Formula

Asymptotic: a(n)/n! ~ 1/e^4.

A225554 Longest checkmate in king and empress versus king endgame on an n X n chessboard.

Original entry on oeis.org

3, 5, 7, 8, 10, 11, 13, 14, 16, 18, 19, 21, 23, 25, 26, 28, 30, 32, 34, 35, 37, 39, 41, 43, 44, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 64, 66, 68
Offset: 3

Views

Author

Vaclav Kotesovec, May 10 2013

Keywords

Comments

An empress moves like a rook and a knight.

Examples

			Longest win on an 8x8 chessboard: Ka1 EMb1 - Kd4, 1.Ka1-a2 Kd4-e5 2.Ka2-b3 Ke5-f4 3.Kb3-c3 Kf4-e5 4.EMb1-b6! Ke5-f4 5.Kc3-d4 Kf4-g5 6.Kd4-e4 Kg5-g4! 7.EMb6-e6 Kg4-g3! 8.EMe6-f4! Kg3-h2! 9.Ke4-f3! Kh2-g1! 10.Kf3-g3 Kg1-h1! 11.EMf4-f1#, therefore a(8) = 11.
		

Crossrefs

Formula

Conjecture: a(n) ~ 7*n/4.

A189565 Number of permutations p of 1,2,...,n satisfying |p(i+2)-p(i)|<>3 and |p(j+3)-p(j)|<>2 for all i=1..n-2, j=1..n-3.

Original entry on oeis.org

1, 1, 2, 6, 12, 36, 174, 708, 4334, 31424, 263732, 2503296, 26844578, 316692056, 4090634212, 57274447458, 863488976620
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2011

Keywords

Comments

a(n) is also the number of ways to place n nonattacking pieces rook + leaper[2,3] on an n X n chessboard (in fairy chess the leaper [2,3] is called a zebra).

Crossrefs

Formula

Asymptotic: a(n)/n! ~ 1/e^4.

A189566 Number of permutations p of 1,2,...,n satisfying |p(i+2)-p(i)|<>4 and |p(j+4)-p(j)|<>2 for all i=1..n-2, j=1..n-4.

Original entry on oeis.org

1, 2, 6, 24, 60, 208, 1184, 7840, 51636, 410272, 3836456, 39971896, 455888312, 5717233896, 78164908748, 1153568477544, 18263732340736, 308795344195456, 5550690255143992, 105653899427070440, 2122307518838927952
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 23 2011

Keywords

Comments

a(n) is also the number of ways to place n nonattacking pieces rook + leaper[2,4] on an n X n chessboard.

Crossrefs

Formula

Asymptotic: a(n)/n! ~ 1/e^4.

Extensions

a(17)-a(21) from Max Alekseyev, Jul 28 2024

A189567 Number of permutations p of 1,2,...,n satisfying |p(i+2)-p(i)|<>5 and |p(j+5)-p(j)|<>2 for all i=1..n-2, j=1..n-5.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 392, 1810, 10400, 72228, 589674, 5196870, 52398658, 588036216, 7274466172, 98024173852, 1427556373892
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2011

Keywords

Comments

a(n) is also the number of ways to place n nonattacking pieces rook + leaper[2,5] on an n X n chessboard.

Crossrefs

Formula

Asymptotic: a(n)/n! ~ 1/e^4.

A189568 Number of permutations p of 1,2,...,n satisfying |p(i+3)-p(i)|<>4 and |p(j+4)-p(j)|<>3 for all i=1..n-3, j=1..n-4.

Original entry on oeis.org

1, 1, 2, 6, 24, 80, 326, 1566, 9544, 65036, 518498, 4750006, 48830634, 554929274, 6926227324, 93970452970, 1377573324202
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2011

Keywords

Comments

a(n) is also the number of ways to place n nonattacking pieces rook + leaper[3,4] on an n X n chessboard.

Crossrefs

Formula

Asymptotic: a(n)/n! ~ 1/e^4.

A189569 Number of permutations p of 1,2,...,n satisfying |p(i+3)-p(i)|<>5 and |p(j+5)-p(j)|<>3 for all i=1..n-3, j=1..n-5.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 464, 2274, 13236, 91760, 740562, 6541984, 65632694, 732880076, 8995905626, 120367234946
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2011

Keywords

Comments

a(n) is also the number of ways to place n nonattacking pieces rook + leaper[3,5] on an n X n chessboard.

Crossrefs

Formula

Asymptotic: a(n)/n! ~ 1/e^4.

A218244 Number of inequivalent (rotationally and reflectively distinct) ways to place n nonattacking empresses on n X n board.

Original entry on oeis.org

1, 1, 1, 3, 6, 21, 75, 415, 2621, 21066, 195485, 2083543, 24744474, 323438322, 4596672672, 70440521310
Offset: 1

Views

Author

Witold Dlugosz, Oct 24 2012

Keywords

Comments

An empress moves like a rook and a knight.

Examples

			a(4) = 3: different ways to place 4 nonattacking empresses on a 4 X 4 board:
Xooo Xooo oXoo
oXoo oooX Xooo
ooXo ooXo oooX
oooX oXoo ooXo
		

Crossrefs

Showing 1-10 of 12 results. Next