cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A187235 Number of ways to place n nonattacking semi-bishops on an n X n board.

Original entry on oeis.org

1, 5, 51, 769, 15345, 381065, 11323991, 391861841, 15476988033, 687029386845, 33861652925595, 1834814222811361, 108411291759763681, 6936921762461326545, 477881176664541171375, 35264213540563039871265, 2775185864375851234241985, 232010235620834821000259765, 20534530616200868936398461635
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 08 2011

Keywords

Comments

Two semi-bishops do not attack each other if they are in the same NorthWest-SouthEast diagonal.
Conjecture: Number of parity preserving permutations of the set {1, 2, ..., 2n+1} with exactly n+1 cycles (see A246117). - Peter Luschny, Feb 09 2015

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,Coefficient[Expand[Product[x+i,{i,1,n}]*Product[x+i,{i,1,n-1}],x],x,n-1]],{n,1,50}]
    Table[(-1)^n*Sum[StirlingS1[n+1,j]*StirlingS1[n,n-j+1],{j,1,n}],{n,1,50}] (* Explicit formula, Vaclav Kotesovec, Mar 24 2011 *)
  • PARI
    a(n) = {(-1)^n*sum(i=0, n, stirling(n,i,1) * stirling(n+1,n-i+1,1))} \\ Andrew Howroyd, May 09 2020

Formula

a(n)/(n-1)! ~ 0.24252191 * 4.9108149^n where the second constant is 1/(z*(1-z)) = 4.910814964..., where z=0.715331862959... is a root of the equation z=2*(z-1)*log(1-z).
For constants see A238261 and A238262. - Vaclav Kotesovec, Feb 21 2014
a(n) = (-1)^n * Sum_{i=0..n} Stirling1(n,i) * Stirling1(n+1,n-i+1). - Ryan Brooks, May 09 2020

A238261 Decimal expansion of a constant related to A187235.

Original entry on oeis.org

4, 9, 1, 0, 8, 1, 4, 9, 6, 4, 5, 6, 8, 2, 5, 5, 8, 9, 8, 7, 5, 1, 5, 3, 4, 8, 0, 5, 2, 4, 0, 3, 5, 2, 1, 9, 7, 8, 9, 8, 7, 0, 5, 2, 8, 1, 7, 6, 7, 8, 4, 7, 1, 7, 6, 1, 3, 9, 4, 1, 1, 2, 0, 2, 2, 5, 6, 4, 1, 7, 8, 7, 7, 8, 7, 9, 9, 4, 7, 9, 7, 2, 9, 5, 1, 8, 1, 9, 7, 4, 1, 5, 3, 5, 5, 4, 4, 6, 1, 4, 2, 5, 0, 5, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			4.9108149645682558987515348...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-(2*LambertW[-1,-1/2/Sqrt[E]])^2/(1+2*LambertW[-1,-1/2/Sqrt[E]]), 105]][[1]]

Formula

Equals lim n->infinity (A187235(n)/(n-1)!)^(1/n).
Equals -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)).
Showing 1-2 of 2 results.