A187235 Number of ways to place n nonattacking semi-bishops on an n X n board.
1, 5, 51, 769, 15345, 381065, 11323991, 391861841, 15476988033, 687029386845, 33861652925595, 1834814222811361, 108411291759763681, 6936921762461326545, 477881176664541171375, 35264213540563039871265, 2775185864375851234241985, 232010235620834821000259765, 20534530616200868936398461635
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..350
- V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 260-265.
Programs
-
Mathematica
Table[If[n==1,1,Coefficient[Expand[Product[x+i,{i,1,n}]*Product[x+i,{i,1,n-1}],x],x,n-1]],{n,1,50}] Table[(-1)^n*Sum[StirlingS1[n+1,j]*StirlingS1[n,n-j+1],{j,1,n}],{n,1,50}] (* Explicit formula, Vaclav Kotesovec, Mar 24 2011 *)
-
PARI
a(n) = {(-1)^n*sum(i=0, n, stirling(n,i,1) * stirling(n+1,n-i+1,1))} \\ Andrew Howroyd, May 09 2020
Formula
a(n)/(n-1)! ~ 0.24252191 * 4.9108149^n where the second constant is 1/(z*(1-z)) = 4.910814964..., where z=0.715331862959... is a root of the equation z=2*(z-1)*log(1-z).
a(n) = (-1)^n * Sum_{i=0..n} Stirling1(n,i) * Stirling1(n+1,n-i+1). - Ryan Brooks, May 09 2020
Comments