A330414 Cyclops primes that become a cube when the middle "0" is removed.
68059, 1170649, 4560533, 7530571, 136501919, 158103251, 173703979, 212503933, 226605187, 356101289, 362604691, 382702753, 439806977, 518905117, 811802737, 954403993, 19484041249, 19956016979, 22635071297, 24658046551, 27263097773, 34635012697, 35326042667, 37166072149, 39668022287, 41499095543, 44839062449
Offset: 1
Examples
a(1) = 68059 because 6859 = 19^3 is the first cube that results from the removal of the 0 digit from a cyclops prime. 136501919 is a term because 13651919 is 239^3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 (first 60 terms from Rodolfo Ruiz-Huidobro)
Programs
-
Maple
count:= 0: Res:= NULL: for d from 2 to 6 do for n from ceil(10^((2*d-1)/3)) to floor((10^(2*d)-1)^(1/3)) do L:=convert(n^3,base,10); if member(0,L) then next fi; a:= n^3 mod 10^d; p:= 10*(n^3-a)+a; if isprime(p) then count:= count+1; Res:= Res, p; fi od od: Res; # Robert Israel, Dec 24 2019
-
PARI
seq(n)={my(i=0, L=List()); while(#L
t==0,v), my(m=fromdigits(concat([v[1..k], 0, v[k+1..#v]]))); if(isprime(m), listput(L,m)))); Vec(L)} \\ Andrew Howroyd, Dec 20 2019