A330587
A(n,k) is the n-th index m such that A330439(m) = k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
Original entry on oeis.org
0, 3, 1, 6, 7, 2, 13, 10, 9, 4, 21, 16, 12, 15, 5, 23, 31, 19, 18, 17, 8, 27, 38, 36, 29, 25, 20, 11, 33, 41, 49, 44, 30, 26, 24, 14, 46, 43, 55, 56, 59, 40, 37, 34, 22, 67, 52, 64, 58, 62, 61, 50, 39, 35, 28, 81, 70, 78, 76, 73, 72, 69, 51, 47, 53, 32, 104, 94, 91, 88, 84, 75, 79, 82, 66, 57, 54, 42
Offset: 1
Square array A(n,k) begins:
0, 3, 6, 13, 21, 23, 27, 33, 46, 67, ...
1, 7, 10, 16, 31, 38, 41, 43, 52, 70, ...
2, 9, 12, 19, 36, 49, 55, 64, 78, 91, ...
4, 15, 18, 29, 44, 56, 58, 76, 88, 93, ...
5, 17, 25, 30, 59, 62, 73, 84, 90, 98, ...
8, 20, 26, 40, 61, 72, 75, 87, 117, 139, ...
11, 24, 37, 50, 69, 79, 85, 121, 124, 154, ...
14, 34, 39, 51, 82, 102, 118, 142, 155, 157, ...
22, 35, 47, 66, 97, 110, 133, 180, 190, 202, ...
28, 53, 57, 74, 106, 116, 164, 183, 197, 205, ...
-
b:= proc() 0 end:
g:= proc(n) option remember; local t;
t:= `if`(n<2, n, b(g(n-1))+b(g(n-2)));
b(t):= b(t)+1; t
end:
f:= proc(n) option remember; b(g(n)) end:
A:= proc() local l, t; t, l:= -1, proc() [] end;
proc(n,k) local h;
while nops(l(k))
-
b[_] = 0;
g[n_] := g[n] = Module[{t}, t = If[n < 2, n, b[g[n - 1]] + b[g[n - 2]]]; b[t]++; t];
f[n_] := f[n] = b[g[n]];
A[n_, k_] := Module[{l, t = -1, h}, l[_] = {}; While[Length[l[k]] < n, t++; h = f[t]; AppendTo[l[h], t]]; l[k][[n]]];
Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)
A330588
a(n) is the first index m such that A330439(m) = n.
Original entry on oeis.org
0, 3, 6, 13, 21, 23, 27, 33, 46, 67, 81, 104, 107, 114, 129, 166, 169, 172, 193, 261, 267, 276, 287, 311, 373, 430, 457, 478, 485, 590, 596, 656, 691, 768, 789, 796, 873, 941, 969, 1047, 1093, 1149, 1170, 1239, 1303, 1349, 1491, 1533, 1555, 1567, 1805, 1808
Offset: 1
-
b:= proc() 0 end:
g:= proc(n) option remember; local t;
t:= `if`(n<2, n, b(g(n-1))+b(g(n-2)));
b(t):= b(t)+1; t
end:
f:= proc(n) option remember; b(g(n)) end:
a:= proc() local l, t; t, l:= -1, proc() -1 end;
proc(k) local h;
while l(k)<0 do t:= t+1; h:= f(t);
if l(h)<0 then l(h):= t fi
od: l(k)
end
end():
seq(a(n), n=1..60);
-
b[_] = 0;
g[n_] := g[n] = Module[{t}, t = If[n < 2, n, b[g[n-1]] + b[g[n-2]]]; b[t]++; t];
f[n_] := f[n] = b[g[n]];
A[n_, k_] := Module[{l, t = -1, h}, l[_] = {}; While[Length[l[k]] < n, t++; h = f[t]; AppendTo[l[h], t]]; l[k][[n]]];
a[k_] := A[1, k];
Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz *)
A330589
The n-th index m such that A330439(m) = n.
Original entry on oeis.org
0, 7, 12, 29, 59, 72, 85, 142, 190, 205, 238, 270, 305, 318, 402, 492, 619, 652, 795, 845, 950, 996, 1121, 1163, 1228, 1393, 1548, 1662, 1756, 1920, 1937, 2106, 2202, 2351, 2448, 2555, 2594, 2707, 2788, 3254, 3420, 3466, 3663, 3974, 4136, 4282, 4363, 4621, 4732
Offset: 1
-
b:= proc() 0 end:
g:= proc(n) option remember; local t;
t:= `if`(n<2, n, b(g(n-1))+b(g(n-2)));
b(t):= b(t)+1; t
end:
f:= proc(n) option remember; b(g(n)) end:
a:= proc() local a, b, t; a, b, t:= proc() end, proc() 0 end, -1;
proc(k) local h;
while b(k)
A316774
a(n) = n for n < 2, a(n) = freq(a(n-1),n) + freq(a(n-2),n) for n >= 2, where freq(i,j) is the number of times i appears in [a(0),a(1),...,a(j-1)].
Original entry on oeis.org
0, 1, 2, 2, 4, 3, 2, 4, 5, 3, 3, 6, 4, 4, 8, 5, 3, 6, 6, 6, 8, 6, 7, 6, 7, 8, 5, 6, 10, 8, 5, 8, 9, 6, 9, 10, 4, 7, 8, 9, 9, 8, 11, 8, 9, 13, 6, 10, 12, 4, 7, 10, 8, 13, 11, 4, 9, 13, 9, 10, 12, 7, 7, 12, 9, 11, 11, 8, 14, 11, 6, 15, 11, 7, 13, 11, 11, 16, 9, 10
Offset: 0
For n=4, a(n-1) = a(n-2) = 2, and 2 appears twice in the first 4 terms. So a(4) = 2 + 2 = 4.
- Alois P. Heinz, Table of n, a(n) for n = 0..65536
- "Horseshoe_Crab" Reddit User, Properties of a Strange, Rather Meta Sequence. [In case this link breaks, the main point of the discussion is to propose the sequence and suggest other initial values. - _N. J. A. Sloane_, Dec 13 2019]
- Peter Illig, Problems. [No date, probably 2018]
- Samuel B. Reid, Density plot of one billion terms
- Rémy Sigrist, Density plot of the first 10000000 terms
See
A306246 and
A329934 for similar sequences with different initial conditions.
A330332 considers the frequencies of the three previous terms.
-
b:= proc() 0 end:
a:= proc(n) option remember; local t;
t:= `if`(n<2, n, b(a(n-1))+b(a(n-2)));
b(t):= b(t)+1; t
end:
seq(a(n), n=0..200); # Alois P. Heinz, Jul 12 2018
-
a = prev = {0, 1};
Do[
AppendTo[prev, Count[a, prev[[1]]] + Count[a, prev[[2]]]];
AppendTo[a, prev[[3]]];
prev = prev[[2 ;;]] , {78}]
a (* Peter Illig, Jul 12 2018 *)
-
from itertools import islice
from collections import Counter
def agen():
a = [0, 1]; c = Counter(a); yield from a
while True:
a = [a[-1], c[a[-1]] + c[a[-2]]]; c[a[-1]] += 1; yield a[-1]
print(list(islice(agen(), 80))) # Michael S. Branicky, Oct 13 2022
A330440
Numbers k such that A316774(k) != A316774(j) for all 0 <= j < k.
Original entry on oeis.org
0, 1, 2, 4, 5, 8, 11, 14, 22, 28, 32, 42, 45, 48, 68, 71, 77, 89, 92, 95, 108, 115, 140, 149, 194, 216, 254, 257, 260, 263, 268, 277, 295, 298, 310, 340, 346, 362, 365, 424, 431, 462, 476, 479, 486, 539, 560, 576, 579, 657, 692, 707, 754, 757, 794, 797, 928
Offset: 1
-
b:= proc() 0 end:
g:= proc(n) option remember; local t;
t:= `if`(n<2, n, b(g(n-1))+b(g(n-2)));
b(t):= b(t)+1; t
end:
f:= proc(n) option remember; b(g(n)) end:
a:= proc(n) option remember; local k; for k from 1+
`if`(n=1, -1, a(n-1)) while f(k)<>1 do od; k
end:
seq(a(n), n=1..80);
-
b[_] = 0;
g[n_] := g[n] = Module[{t},
t = If[n < 2, n, b[g[n - 1]] + b[g[n - 2]]];
b[t]++; t];
f[n_] := f[n] = b[g[n]];
a[n_] := a[n] = Module[{k}, For[k = 1 +
If[n == 1, -1, a[n - 1]], f[k] != 1, k++]; k];
Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments