cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330451 a(n) = a(n-3) + 20*n - 30 for n > 2, with a(0)=0, a(1)=3, a(2)=13.

Original entry on oeis.org

0, 3, 13, 30, 53, 83, 120, 163, 213, 270, 333, 403, 480, 563, 653, 750, 853, 963, 1080, 1203, 1333, 1470, 1613, 1763, 1920, 2083, 2253, 2430, 2613, 2803, 3000, 3203, 3413, 3630, 3853, 4083, 4320, 4563, 4813, 5070
Offset: 0

Views

Author

Paul Curtz, Mar 01 2020

Keywords

Comments

Main N-S vertical in the pentagonal spiral for A002264:
16
16 10 10
16 9 5 5 10
15 9 4 1 2 5 11
15 9 4 1 0 0 2 6 11
15 8 4 1 0 2 6 11
14 8 3 3 3 6 12
14 8 7 7 7 12
14 13 13 13 12
The main S-N vertical is A194275.

Crossrefs

Cf. A049347.

Programs

  • Mathematica
    Table[2/9(-1+15n^2+Cos[2n*Pi/3]),{n,0,39}] (* Stefano Spezia, Mar 02 2020 *)
  • PARI
    concat(0, Vec(x*(1 + x)*(3 + 4*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Mar 02 2020
    
  • Python
    def A330451(n): return 10*n**2//3 # Chai Wah Wu, Aug 12 2025

Formula

G.f.: x*(1 + x)*(3 + 4*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Mar 02 2020
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(n) = (2/9)*(-1 + 15*n^2 + cos(2*n*Pi/3)). - Stefano Spezia, Mar 02 2020
a(3*n) = 30*n^2.
a(n) = floor(10*n^2/3). - Chai Wah Wu, Aug 12 2025