A330451 a(n) = a(n-3) + 20*n - 30 for n > 2, with a(0)=0, a(1)=3, a(2)=13.
0, 3, 13, 30, 53, 83, 120, 163, 213, 270, 333, 403, 480, 563, 653, 750, 853, 963, 1080, 1203, 1333, 1470, 1613, 1763, 1920, 2083, 2253, 2430, 2613, 2803, 3000, 3203, 3413, 3630, 3853, 4083, 4320, 4563, 4813, 5070
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Programs
-
Mathematica
Table[2/9(-1+15n^2+Cos[2n*Pi/3]),{n,0,39}] (* Stefano Spezia, Mar 02 2020 *)
-
PARI
concat(0, Vec(x*(1 + x)*(3 + 4*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Mar 02 2020
-
Python
def A330451(n): return 10*n**2//3 # Chai Wah Wu, Aug 12 2025
Formula
G.f.: x*(1 + x)*(3 + 4*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Mar 02 2020
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(n) = (2/9)*(-1 + 15*n^2 + cos(2*n*Pi/3)). - Stefano Spezia, Mar 02 2020
a(3*n) = 30*n^2.
a(n) = floor(10*n^2/3). - Chai Wah Wu, Aug 12 2025
Comments