A330453 Number of strict multiset partitions of multiset partitions of integer partitions of n.
1, 1, 3, 9, 23, 62, 161, 410, 1031, 2579, 6359, 15575, 37830, 91241, 218581, 520544, 1232431, 2902644, 6802178, 15866054, 36844016, 85202436, 196251933, 450341874, 1029709478, 2346409350, 5329371142, 12066816905, 27240224766, 61317231288, 137643961196
Offset: 0
Keywords
Examples
The a(4) = 23 partitions: ((4)) ((22)) ((31)) ((211)) ((1111)) ((2)(2)) ((1)(3)) ((1)(21)) ((1)(111)) ((1))((3)) ((2)(11)) ((11)(11)) ((1)(1)(2)) ((1))((111)) ((1))((21)) ((1)(1)(11)) ((2))((11)) ((1))((1)(11)) ((1))((1)(2)) ((1)(1)(1)(1)) ((2))((1)(1)) ((11))((1)(1)) ((1))((1)(1)(1))
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3853
Crossrefs
Programs
-
Maple
with(numtheory): with(combinat): b:= proc(n) option remember; `if`(n=0, 1, add(add(d* numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n) end: a:= proc(n) a(n):= `if`(n<2, 1, add(a(n-k)*add(b(d) *d*(-1)^(k/d+1), d=divisors(k)), k=1..n)/n) end: seq(a(n), n=0..32); # Alois P. Heinz, Jul 18 2021
-
Mathematica
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; Table[Length[Select[ppl[n,3],UnsameQ@@#&]],{n,0,10}]
Formula
Weigh transform of A001970. The weigh transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} (1 + x^i)^s_i.
Comments