cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330461 Array read by antidiagonals where A(n,k) is the number of multiset partitions with k levels that are strict at all levels and have total sum n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 4, 7, 7, 5, 1, 1, 1, 1, 5, 12, 14, 11, 6, 1, 1, 1, 1, 6, 19, 29, 25, 16, 7, 1, 1, 1, 1, 8, 30, 57, 60, 41, 22, 8, 1, 1, 1, 1, 10, 49, 110, 141, 111, 63, 29, 9, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 18 2019

Keywords

Examples

			Array begins:
       k=0 k=1 k=2 k=3 k=4 k=5 k=6
      -----------------------------
  n=0:  1   1   1   1   1   1   1
  n=1:  1   1   1   1   1   1   1
  n=2:  1   1   1   1   1   1   1
  n=3:  1   2   3   4   5   6   7
  n=4:  1   2   4   7  11  16  22
  n=5:  1   3   7  14  25  41  63
  n=6:  1   4  12  29  60 111 189
For example, the A(5,3) = 14 partitions are:
  {{5}}      {{1}}{{4}}
  {{14}}     {{2}}{{3}}
  {{23}}     {{1}}{{13}}
  {{1}{4}}   {{2}}{{12}}
  {{2}{3}}   {{1}}{{1}{3}}
  {{1}{13}}  {{2}}{{1}{2}}
  {{2}{12}}  {{1}}{{1}{12}}
		

Crossrefs

Columns are A000012 (k = 0), A000009 (k = 1), A050342 (k = 2), A050343 (k = 3), A050344 (k = 4).
The non-strict version is A290353.

Programs

  • Mathematica
    spl[n_,0]:={n};
    spl[n_,k_]:=Select[Join@@Table[Union[Sort/@Tuples[spl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}],UnsameQ@@#&];
    Table[Length[spl[n-k,k]],{n,0,10},{k,0,n}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    M(n, k=n)={my(L=List(), v=vector(n,i,1)); listput(L, concat([1], v)); for(j=1, k, v=WeighT(v); listput(L, concat([1], v))); Mat(Col(L))~}
    { my(A=M(7)); for(i=1, #A, print(A[i,])) } \\ Andrew Howroyd, Dec 31 2019

Formula

Column k is the k-th weigh transform of the all-ones sequence. The weigh transform of a sequence b has generating function Product_{i > 0} (1 + x^i)^b(i).