A330461 Array read by antidiagonals where A(n,k) is the number of multiset partitions with k levels that are strict at all levels and have total sum n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 4, 4, 1, 1, 1, 1, 4, 7, 7, 5, 1, 1, 1, 1, 5, 12, 14, 11, 6, 1, 1, 1, 1, 6, 19, 29, 25, 16, 7, 1, 1, 1, 1, 8, 30, 57, 60, 41, 22, 8, 1, 1, 1, 1, 10, 49, 110, 141, 111, 63, 29, 9, 1, 1, 1
Offset: 0
Examples
Array begins: k=0 k=1 k=2 k=3 k=4 k=5 k=6 ----------------------------- n=0: 1 1 1 1 1 1 1 n=1: 1 1 1 1 1 1 1 n=2: 1 1 1 1 1 1 1 n=3: 1 2 3 4 5 6 7 n=4: 1 2 4 7 11 16 22 n=5: 1 3 7 14 25 41 63 n=6: 1 4 12 29 60 111 189 For example, the A(5,3) = 14 partitions are: {{5}} {{1}}{{4}} {{14}} {{2}}{{3}} {{23}} {{1}}{{13}} {{1}{4}} {{2}}{{12}} {{2}{3}} {{1}}{{1}{3}} {{1}{13}} {{2}}{{1}{2}} {{2}{12}} {{1}}{{1}{12}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
Mathematica
spl[n_,0]:={n}; spl[n_,k_]:=Select[Join@@Table[Union[Sort/@Tuples[spl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}],UnsameQ@@#&]; Table[Length[spl[n-k,k]],{n,0,10},{k,0,n}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} M(n, k=n)={my(L=List(), v=vector(n,i,1)); listput(L, concat([1], v)); for(j=1, k, v=WeighT(v); listput(L, concat([1], v))); Mat(Col(L))~} { my(A=M(7)); for(i=1, #A, print(A[i,])) } \\ Andrew Howroyd, Dec 31 2019
Formula
Column k is the k-th weigh transform of the all-ones sequence. The weigh transform of a sequence b has generating function Product_{i > 0} (1 + x^i)^b(i).