A330462 Triangle read by rows where T(n,k) is the number of k-element sets of nonempty sets of positive integers with total sum n.
1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 0, 3, 4, 0, 0, 0, 0, 4, 6, 2, 0, 0, 0, 0, 5, 11, 3, 0, 0, 0, 0, 0, 6, 16, 8, 0, 0, 0, 0, 0, 0, 8, 25, 15, 1, 0, 0, 0, 0, 0, 0, 10, 35, 28, 4, 0, 0, 0, 0, 0, 0, 0, 12, 52, 46, 9, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 0 0 2 1 0 0 2 2 0 0 0 3 4 0 0 0 0 4 6 2 0 0 0 0 5 11 3 0 0 0 0 0 6 16 8 0 0 0 0 0 0 8 25 15 1 0 0 0 0 0 0 10 35 28 4 0 0 0 0 0 0 ... Row n = 7 counts the following set-systems: {{7}} {{1},{6}} {{1},{2},{4}} {{1,6}} {{2},{5}} {{1},{2},{1,3}} {{2,5}} {{3},{4}} {{1},{3},{1,2}} {{3,4}} {{1},{1,5}} {{1,2,4}} {{1},{2,4}} {{2},{1,4}} {{2},{2,3}} {{3},{1,3}} {{4},{1,2}} {{1},{1,2,3}} {{1,2},{1,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows n = 0..50)
Crossrefs
Programs
-
Mathematica
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; Table[Length[Select[ppl[n,2],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[#]==k]&]],{n,0,10},{k,0,n}]
-
PARI
L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))} A(n)={my(c=L(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))} {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019
Formula
G.f.: Product_{j>=1} (1 + y*x^j)^A000009(j). - Andrew Howroyd, Dec 29 2019