A330469 Number of series-reduced rooted trees whose leaves are multisets with a total of n elements covering an initial interval of positive integers.
1, 1, 4, 24, 250, 3744, 73408, 1768088, 50468854, 1664844040, 62304622320, 2607765903568, 120696071556230, 6120415124163512, 337440974546042416, 20096905939846645064, 1285779618228281270718, 87947859243850506008984, 6404472598196204610148232
Offset: 0
Keywords
Examples
The a(3) = 24 trees: (123) (122) (112) (111) ((1)(23)) ((1)(22)) ((1)(12)) ((1)(11)) ((2)(13)) ((2)(12)) ((2)(11)) ((1)(1)(1)) ((3)(12)) ((1)(2)(2)) ((1)(1)(2)) ((1)((1)(1))) ((1)(2)(3)) ((1)((2)(2))) ((1)((1)(2))) ((1)((2)(3))) ((2)((1)(2))) ((2)((1)(1))) ((2)((1)(3))) ((3)((1)(2)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times]; amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}]; Table[Sum[amemo[m],{m,allnorm[n]}],{n,0,5}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(n+k-1, k-1)]))[n])); v} seq(n)={concat([1], sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 29 2019
Extensions
Terms a(9) and beyond from Andrew Howroyd, Dec 29 2019
Comments