A330470 Number of non-isomorphic series/singleton-reduced rooted trees on a multiset of size n.
1, 1, 2, 7, 39, 236, 1836, 16123, 162008, 1802945, 22012335, 291290460, 4144907830, 62986968311, 1016584428612, 17344929138791, 311618472138440, 5875109147135658, 115894178676866576, 2385755803919949337, 51133201045333895149, 1138659323863266945177, 26296042933904490636133
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(4) = 39 trees, with singleton leaves (x) replaced by just x: (1111) (1112) (1122) (1123) (1234) (1(111)) (1(112)) (1(122)) (1(123)) (1(234)) (11(11)) (11(12)) (11(22)) (11(23)) (12(34)) ((11)(11)) (12(11)) (12(12)) (12(13)) ((12)(34)) (1(1(11))) (2(111)) ((11)(22)) (2(113)) (1(2(34))) ((11)(12)) (1(1(22))) (23(11)) (1(1(12))) ((12)(12)) ((11)(23)) (1(2(11))) (1(2(12))) (1(1(23))) (2(1(11))) ((12)(13)) (1(2(13))) (2(1(13))) (2(3(11)))
Crossrefs
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n )); x*Ser(v)} InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020
Extensions
Terms a(7) and beyond from Andrew Howroyd, Dec 11 2020
Comments