A330472 Triangle read by rows where T(n,k) is the number of non-isomorphic k-element multisets of nonempty multisets of nonempty multisets (all finite).
1, 0, 1, 0, 4, 2, 0, 10, 8, 3, 0, 33, 48, 18, 5, 0, 91, 204, 118, 32, 7, 0, 298, 959, 743, 266, 58, 11, 0, 910, 4193, 4334, 1927, 519, 94, 15, 0, 3017, 18947, 25305, 13992, 4407, 966, 154, 22, 0, 9945, 84798, 145033, 97947, 36410, 9023, 1679, 236, 30
Offset: 0
Examples
Triangle begins: 1 0 1 0 4 2 0 10 8 3 0 33 48 18 5 0 91 204 118 32 7 0 298 959 743 266 58 11 For example, row n = 3 counts the following multiset partitions: {{111}} {{1}}{{11}} {{1}}{{1}}{{1}} {{112}} {{1}}{{12}} {{1}}{{1}}{{2}} {{123}} {{1}}{{23}} {{1}}{{2}}{{3}} {{1}{11}} {{2}}{{11}} {{1}{12}} {{1}}{{1}{1}} {{1}{23}} {{1}}{{1}{2}} {{2}{11}} {{1}}{{2}{3}} {{1}{1}{1}} {{2}}{{1}{1}} {{1}{1}{2}} {{1}{2}{3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..350
Crossrefs
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. ColGf(k,n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(A,k,x)*x^k + O(x*x^n), sExp(A)) ))} M(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))} { my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 17 2023
Extensions
Terms a(21) and beyond from Andrew Howroyd, Jan 17 2023