A330473 Regular triangle where T(n,k) is the number of non-isomorphic multiset partitions of k-element multiset partitions of multisets of size n.
1, 0, 1, 0, 2, 4, 0, 3, 8, 10, 0, 5, 28, 38, 33, 0, 7, 56, 146, 152, 91, 0, 11, 138, 474, 786, 628, 298, 0, 15, 268, 1388, 3117, 3808, 2486, 910, 0, 22, 570, 3843, 11830, 19147, 18395, 9986, 3017, 0, 30, 1072, 10094, 40438, 87081, 110164, 86388, 39889, 9945
Offset: 0
Examples
Triangle begins: 1 0 1 0 2 4 0 3 8 10 0 5 28 38 33 0 7 56 146 152 91 0 11 138 474 786 628 298 For example, row n = 3 counts the following multiset partitions: {{111}} {{1}{11}} {{1}{1}{1}} {{112}} {{1}{12}} {{1}{1}{2}} {{123}} {{1}{23}} {{1}{2}{3}} {{2}{11}} {{1}}{{1}{1}} {{1}}{{11}} {{1}}{{1}{2}} {{1}}{{12}} {{1}}{{2}{3}} {{1}}{{23}} {{2}}{{1}{1}} {{2}}{{11}} {{1}}{{1}}{{1}} {{1}}{{1}}{{2}} {{1}}{{2}}{{3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..350
Crossrefs
Programs
-
PARI
\\ See links in A339645 for combinatorial species functions. ColGf(k, n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(sExp(A), k, x)*x^k + O(x*x^n), A) ))} M(n, m=n)={Mat(vector(m+1, k, Col(ColGf(k-1, n), -(n+1))))} { my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 18 2023
Extensions
Terms a(36) and beyond from Andrew Howroyd, Jan 18 2023
Comments