A330490 Total number of permutation arrays of side length n and dimension k as defined by Eriksson and Linusson (2000a); square array T(n,k), read by ascending antidiagonals, for n, k >= 1.
1, 1, 1, 1, 2, 1, 1, 6, 5, 1, 1, 24, 70, 15, 1, 1, 120, 2167, 1574, 52, 1, 1, 720, 130708, 968162, 69874, 203, 1, 1, 5040, 14231289
Offset: 1
Examples
Array T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows, where * indicates a missing number: 1, 1, 1, 1, 1, ... 1, 2, 5, 15, 52, ... 1, 6, 70, 1574, 69874, ... 1, 24, 2167, 968162, *, ... 1, 120, 130708, *, *, ... 1, 720, 14231289, *, *, ... 1, 5040, 2664334184, *, *, ... 1, 40320, 831478035698, *, *, ... ...
Links
- Kimmo Eriksson and Svante Linusson, A combinatorial theory of higher-dimensional permutation arrays, Adv. Appl. Math. 25(2) (2000a), 194-211.
- Kimmo Eriksson and Svante Linusson, A decomposition of Fl(n)^d indexed by permutation arrays, Adv. Appl. Math. 25(2) (2000b), 212-227. [Fl(n)^d denotes the flag manifold over C^n.]
Comments