A071303 1/2 times the number of n X n 0..3 matrices M with MM' mod 4 = I, where M' is the transpose of M and I is the n X n identity matrix.
1, 8, 192, 12288, 1966080, 1509949440, 5411658792960
Offset: 1
Examples
From _Petros Hadjicostas_, Dec 16 2019: (Start) For n = 2, here are the 2*a(2) = 16 2 x 2 matrices M with elements in {0,1,2,3} that satisfy MM' mod 4 = I: (a) With 1 = det(M) mod 4: [[1,0],[0,1]]; [[0,1],[3,0]]; [[0,3],[1,0]]; [[1,2],[2,1]]; [[2,1],[3,2]]; [[2,3],[1,2]]; [[3,0],[0,3]]; [[3,2],[2,3]]. These form the abelian group SO(2, Z_n). See the comments for sequence A060968. (b) With 3 = det(M) mod 4: [[0,1],[1,0]]; [[0,3],[3,0]]; [[1,0],[0,3]]; [[1,2],[2,3]]; [[2,1],[1,2]]; [[2,3],[3,2]]; [[3,0],[0,1]]; [[3,2],[2,1]]. Note that, for n = 3, we have 2*a(3) = 2*192 = 384 = A264083(4). (End)
Links
- Kimmo Eriksson and Svante Linusson, A combinatorial theory of higher-dimensional permutation arrays, Adv. Appl. Math. 25(2) (2000a), 194-211; see Proposition 6.1 (p. 210).
- Sean A. Irvinne, Java program (github)
- Jianing Song, Structure of the group SO(2,Z_n).
- László Tóth, Counting solutions of quadratic congruences in several variables revisited, arXiv:1404.4214 [math.NT], 2014.
- László Tóth, Counting Solutions of Quadratic Congruences in Several Variables Revisited, J. Int. Seq. 17 (2014), #14.11.6.
Crossrefs
Extensions
a(7) from Sean A. Irvine, Jul 11 2024
Comments