A330503 Number of Sós permutations of {0,1,...,n}.
2, 6, 16, 30, 60, 84, 144, 198, 280, 352, 504, 598, 812, 960, 1152, 1360, 1728, 1938, 2400, 2688, 3080, 3450, 4128, 4500, 5200, 5724, 6440, 7018, 8100, 8618, 9856, 10692, 11696, 12600, 13824, 14652, 16416, 17550, 18960, 20090, 22260, 23306, 25696, 27180, 28888
Offset: 1
Examples
For n = 3, the a(3) = 16 Farey functions of {0,1,2,3} are {0123, 3012, 2301, 1230, 0312, 2031, 1203, 3120, 0213, 3021, 1302, 2130, 0321, 1032, 2103, 3210}.
Links
- S. Bockting-Conrad, Y. Kashina, T. K. Petersen, and B. E. Tenner, Sós permutations, arXiv:2007.01132 [math.CO], 2020.
Crossrefs
Cf. A002088.
Programs
-
Mathematica
MapIndexed[(First[#2] + 1) #1 &, Accumulate@ Array[EulerPhi, 45]] (* Michael De Vlieger, Dec 16 2019 *)
-
PARI
a(n)={(n+1)*sum(k=1, n, eulerphi(k))} \\ Andrew Howroyd, Dec 20 2019
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A330503(n): if n == 0: return 0 c, j = 0, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*(2*A330503(k1)//(k1+1)-1) j, k1 = j2, n//j2 return (n+1)*(n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 29 2021
Formula
a(n) = (n+1) * Sum_{k=1..n} phi(k), where phi(k) is Euler's totient function.
a(n) = (n+1) * A002088(n).
Extensions
More terms from Michael De Vlieger, Dec 16 2019