cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330503 Number of Sós permutations of {0,1,...,n}.

Original entry on oeis.org

2, 6, 16, 30, 60, 84, 144, 198, 280, 352, 504, 598, 812, 960, 1152, 1360, 1728, 1938, 2400, 2688, 3080, 3450, 4128, 4500, 5200, 5724, 6440, 7018, 8100, 8618, 9856, 10692, 11696, 12600, 13824, 14652, 16416, 17550, 18960, 20090, 22260, 23306, 25696, 27180, 28888
Offset: 1

Views

Author

Bridget Tenner, Dec 16 2019

Keywords

Examples

			For n = 3, the a(3) = 16 Farey functions of {0,1,2,3} are {0123, 3012, 2301, 1230, 0312, 2031, 1203, 3120, 0213, 3021, 1302, 2130, 0321, 1032, 2103, 3210}.
		

Crossrefs

Cf. A002088.

Programs

  • Mathematica
    MapIndexed[(First[#2] + 1) #1 &, Accumulate@ Array[EulerPhi, 45]] (* Michael De Vlieger, Dec 16 2019 *)
  • PARI
    a(n)={(n+1)*sum(k=1, n, eulerphi(k))} \\ Andrew Howroyd, Dec 20 2019
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A330503(n):
        if n == 0:
            return 0
        c, j = 0, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*(2*A330503(k1)//(k1+1)-1)
            j, k1 = j2, n//j2
        return (n+1)*(n*(n-1)-c+j)//2 # Chai Wah Wu, Mar 29 2021

Formula

a(n) = (n+1) * Sum_{k=1..n} phi(k), where phi(k) is Euler's totient function.
a(n) = (n+1) * A002088(n).

Extensions

More terms from Michael De Vlieger, Dec 16 2019