cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330508 Numbers k such that k + 6^t is semiprime for t = 0 to 9.

Original entry on oeis.org

61273, 109441, 160213, 274501, 275473, 311593, 360673, 394201, 477181, 486061, 514993, 522085, 617137, 620053, 715477, 725485, 803833, 812677, 847117, 1063585, 1146913, 1182577, 1215865, 1232917, 1409425, 1508113, 1587241, 1768993, 1863073, 1895413, 2085517, 2095177
Offset: 1

Views

Author

K. D. Bajpai, Dec 16 2019

Keywords

Comments

a(2620) = 530079693 is the first multiple of 3 in this sequence; there are no multiples of 2. - Charles R Greathouse IV, Dec 20 2019

Examples

			a(1) = 61273:
  61273 + 6^0  =    61274 =   2 *  30637;
  61273 + 6^1  =    61279 = 233 *    263;
  61273 + 6^2  =    61309 =  37 *   1657;
  61273 + 6^3  =    61489 =  17 *   3617;
  61273 + 6^4  =    62569 =  13 *   4813;
  61273 + 6^5  =    69049 =  29 *   2381;
  61273 + 6^6  =   107929 =  37 *   2917;
  61273 + 6^7  =   341209 =  11 *  31019;
  61273 + 6^8  =  1740889 = 197 *   8837;
  61273 + 6^9  = 10138969 =  89 * 113921;
all ten results are semiprime.
		

Crossrefs

Subsequence of A076274.

Programs

  • Magma
    f:=func; [k:k in [1..2100000]|forall{m:m in [0..9]|f(k+6^m)}]; // Marius A. Burtea, Dec 20 2019
    
  • Mathematica
    fX[n_] = PrimeOmega[n] == 2; Select[Range[2000000], AllTrue[# + 6^{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, fX] &]
  • PARI
    issemi(n)=bigomega(n)==2
    is(n)=for(t=0,9, if(!issemi(n+6^t), return(0))); 1 \\ Charles R Greathouse IV, Dec 20 2019