A330508 Numbers k such that k + 6^t is semiprime for t = 0 to 9.
61273, 109441, 160213, 274501, 275473, 311593, 360673, 394201, 477181, 486061, 514993, 522085, 617137, 620053, 715477, 725485, 803833, 812677, 847117, 1063585, 1146913, 1182577, 1215865, 1232917, 1409425, 1508113, 1587241, 1768993, 1863073, 1895413, 2085517, 2095177
Offset: 1
Keywords
Examples
a(1) = 61273: 61273 + 6^0 = 61274 = 2 * 30637; 61273 + 6^1 = 61279 = 233 * 263; 61273 + 6^2 = 61309 = 37 * 1657; 61273 + 6^3 = 61489 = 17 * 3617; 61273 + 6^4 = 62569 = 13 * 4813; 61273 + 6^5 = 69049 = 29 * 2381; 61273 + 6^6 = 107929 = 37 * 2917; 61273 + 6^7 = 341209 = 11 * 31019; 61273 + 6^8 = 1740889 = 197 * 8837; 61273 + 6^9 = 10138969 = 89 * 113921; all ten results are semiprime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Magma
f:=func
; [k:k in [1..2100000]|forall{m:m in [0..9]|f(k+6^m)}]; // Marius A. Burtea, Dec 20 2019 -
Mathematica
fX[n_] = PrimeOmega[n] == 2; Select[Range[2000000], AllTrue[# + 6^{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, fX] &]
-
PARI
issemi(n)=bigomega(n)==2 is(n)=for(t=0,9, if(!issemi(n+6^t), return(0))); 1 \\ Charles R Greathouse IV, Dec 20 2019
Comments