A330509 Triangle read by rows: T(n,k) is the number of 4-ary strings of length n with k indispensable digits, with 0 <= k <= n.
1, 1, 3, 1, 9, 6, 1, 19, 34, 10, 1, 34, 115, 91, 15, 1, 55, 301, 445, 201, 21, 1, 83, 672, 1582, 1338, 392, 28, 1, 119, 1344, 4600, 6174, 3410, 700, 36, 1, 164, 2478, 11623, 22548, 19784, 7723, 1170, 45, 1, 219, 4290, 26452, 69834, 88428, 55009, 15999, 1857, 55
Offset: 0
Examples
Triangle begins 1; 1, 3; 1, 9, 6; 1, 19, 34, 10; 1, 34, 115, 91, 15; 1, 55, 301, 445, 201, 21; ... There is 1 string (00) of length 2 with 0 indispensable digits. There are 9 strings (01, 02, 03, 10, 12, 13, 20, 23, 30) of length 2 with 1 indispensable digit. There are 6 strings (11, 21, 22, 31, 32, 33) of length 2 with 2 indispensable digits. Hence T(2,0)=1, T(2,1)=9, T(2,2)=6.
Links
- J. Y. Choi, Indispensable digits for digit sums, Notes Number Theory Discrete Math 25 (2019), pp. 40-48.
- J. Y. Choi, Digit sums generalizing binomial coefficients, J. Integer Seq. 22 (2019), Article 19.8.3.
Programs
-
Mathematica
Table[Total@ Map[Sum[Binomial[n, i] Binomial[n, # - 2 i], {i, 0, #/2}] &, 3 k + {-2, -1, 0}], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 23 2019, after Jean-François Alcover at A008287 *)
-
PARI
A008287(n, k) = if(n<0, 0, polcoeff((1 + x + x^2 + x^3)^n, k)); T(n, k) = A008287(n, 3*k-2)+A008287(n, 3*k-1) + A008287(n, 3*k);
Comments