A330587 A(n,k) is the n-th index m such that A330439(m) = k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
0, 3, 1, 6, 7, 2, 13, 10, 9, 4, 21, 16, 12, 15, 5, 23, 31, 19, 18, 17, 8, 27, 38, 36, 29, 25, 20, 11, 33, 41, 49, 44, 30, 26, 24, 14, 46, 43, 55, 56, 59, 40, 37, 34, 22, 67, 52, 64, 58, 62, 61, 50, 39, 35, 28, 81, 70, 78, 76, 73, 72, 69, 51, 47, 53, 32, 104, 94, 91, 88, 84, 75, 79, 82, 66, 57, 54, 42
Offset: 1
Examples
Square array A(n,k) begins: 0, 3, 6, 13, 21, 23, 27, 33, 46, 67, ... 1, 7, 10, 16, 31, 38, 41, 43, 52, 70, ... 2, 9, 12, 19, 36, 49, 55, 64, 78, 91, ... 4, 15, 18, 29, 44, 56, 58, 76, 88, 93, ... 5, 17, 25, 30, 59, 62, 73, 84, 90, 98, ... 8, 20, 26, 40, 61, 72, 75, 87, 117, 139, ... 11, 24, 37, 50, 69, 79, 85, 121, 124, 154, ... 14, 34, 39, 51, 82, 102, 118, 142, 155, 157, ... 22, 35, 47, 66, 97, 110, 133, 180, 190, 202, ... 28, 53, 57, 74, 106, 116, 164, 183, 197, 205, ...
Links
- Alois P. Heinz, Antidiagonals n = 1..365, flattened
Crossrefs
Programs
-
Maple
b:= proc() 0 end: g:= proc(n) option remember; local t; t:= `if`(n<2, n, b(g(n-1))+b(g(n-2))); b(t):= b(t)+1; t end: f:= proc(n) option remember; b(g(n)) end: A:= proc() local l, t; t, l:= -1, proc() [] end; proc(n,k) local h; while nops(l(k))
-
Mathematica
b[_] = 0; g[n_] := g[n] = Module[{t}, t = If[n < 2, n, b[g[n - 1]] + b[g[n - 2]]]; b[t]++; t]; f[n_] := f[n] = b[g[n]]; A[n_, k_] := Module[{l, t = -1, h}, l[_] = {}; While[Length[l[k]] < n, t++; h = f[t]; AppendTo[l[h], t]]; l[k][[n]]]; Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Feb 11 2021, after Alois P. Heinz *)