A330625 Number of series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with multiset union a strongly normal multiset of size n.
1, 1, 3, 14, 123, 1330, 19694
Offset: 0
Examples
The a(1) = 1 through a(3) = 14 trees: {1} {1,2} {1,2,3} {{1},{1}} {{1},{1,2}} {{1},{2}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1},{1},{1}} {{1},{1},{2}} {{1},{2},{3}} {{1},{{1},{1}}} {{1},{{1},{2}}} {{1},{{2},{3}}} {{2},{{1},{1}}} {{2},{{1},{3}}} {{3},{{1},{2}}}
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; srtrees[m_]:=Prepend[Join@@Table[Tuples[srtrees/@p],{p,Select[mps[m],Length[#1]>1&]}],m]; Table[Sum[Length[Select[srtrees[s],FreeQ[#,{_,x_Integer,x_Integer,_}]&]],{s,strnorm[n]}],{n,0,5}]
Comments