A330661 T(n,k) is the index within the partitions of n in canonical ordering of the k-th partition whose parts differ pairwise by at most one.
1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 5, 8, 9, 10, 11, 1, 5, 9, 12, 13, 14, 15, 1, 8, 13, 18, 19, 20, 21, 22, 1, 8, 19, 22, 26, 27, 28, 29, 30, 1, 13, 22, 30, 37, 38, 39, 40, 41, 42, 1, 13, 30, 41, 46, 51, 52, 53, 54, 55, 56, 1, 20, 44, 59, 62, 71, 72, 73, 74, 75, 76, 77
Offset: 1
Examples
Partitions of 8 in canonical ordering begin: 8, 71, 62, 611, 53, 521, 5111, 44, 431, 422, 4211, 41111, 332, ... . The partitions whose parts differ pairwise by at most one in this list are 8, 44, 332, ... at indices 1, 8, 13, ... and this gives row 8 of this triangle. Triangle T(n,k) begins: 1; 1, 2; 1, 2, 3; 1, 3, 4, 5; 1, 3, 5, 6, 7; 1, 5, 8, 9, 10, 11; 1, 5, 9, 12, 13, 14, 15; 1, 8, 13, 18, 19, 20, 21, 22; 1, 8, 19, 22, 26, 27, 28, 29, 30; 1, 13, 22, 30, 37, 38, 39, 40, 41, 42; ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- OEIS Wiki, Orderings of partitions (a comparison).
Programs
-
Maple
b:= proc(l) option remember; (n-> `if`(n=0, 1, b(subsop(1=[][], l))+g(n, l[1]-1)))(add(j, j=l)) end: g:= proc(n, i) option remember; `if`(n=0 or i=1, 1, `if`(i<1, 0, g(n-i, min(n-i, i))+g(n, i-1))) end: T:= proc(n, k) option remember; 1 + g(n$2)- b((q-> [q+1$r, q$k-r])(iquo(n, k, 'r'))) end: seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Feb 19 2020
-
Mathematica
b[l_List] := b[l] = Function[n, If[n == 0, 1, b[ReplacePart[l, 1 -> Nothing]] + g[n, l[[1]] - 1]]][Total[l]]; g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, If[i < 1, 0, g[n - i, Min[n - i, i]] + g[n, i - 1]]]; T[n_, k_] := T[n, k] = Module[{q, r}, {q, r} = QuotientRemainder[n, k]; 1 + g[n, n] - b[Join[Table[q + 1, {r}], Table[q, {k - r}]]]]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
-
PARI
balP(p) = p[1]-p[#p]<=1 Row(n)={v=vecsort([Vecrev(p) | p<-partitions(n)], , 4);select(i->balP(v[i]),[1..#v])} { for(n=1, 10, print(Row(n))) }
Formula
T(n,1) = 1.
T(n,n) = A000041(n).
T(n,k) = A000041(n) - (n - k) for k = ceiling(n/2)..n.
T(2n,2) = T(2n+1,2) = A216053(n). - Alois P. Heinz, Jan 28 2020
Comments