A330673 The possible v-factors for any A202018(k) (while A202018(k) = v * w, v and w are integers, w >= v >= 41, v = w iff w = 41, all such v-factors form the set V).
41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 163, 167, 173, 179, 197, 199, 223, 227, 251, 263, 281, 307, 313, 347, 359, 367, 373, 379, 383, 397, 409, 419, 421, 439, 457, 461, 487, 499, 503, 523, 547, 563, 577, 593, 607, 641, 647, 653, 661, 673, 677, 691, 701, 709, 733
Offset: 0
Keywords
Examples
Let i = 3, t = 1, j = -1. Then v(i,t,j) = m(j) * i^2 + b + ja = 41 * 3^2 + 4 - 6 = 41 * 9 - 2 = 367, and 367 is a term of a(n). We could find all terms of a(n) v < 10^n and then all Euler primes p < 10^(2n) (for n > 1, number of all numbers m such that are terms of A202018 (and any m < 10^(2n)) is 10^n; trivial). Let 2n = 10; it's easy to establish that, while i > 49, any v(i,t,j)^2 > 10^10; thus, we can use 0 < i < 50 to find all numbers v < 10^5. While m is a term of A202018, m < 10^10, m is composite iff there is at least one v such that m == 0 (mod v); otherwise, m is prime. We could easily remove all "false" numbers v that cannot be divisors of any m. Let p' be a regular prime (p' is a term of A000040, but not of a(n)) such that any 3p' < UB(i); in our case, any 3p' < 50. Thus, we could try any v with p' = {2,3,5,7,11,13}; if v == 0 (mod p'), it is "false"; otherwise, there is at least one m < 10^10 such that m == 0 (mod v).
Links
- Sergey Pavlov, Table of n, a(n) for n = 0..312
- Sergey Pavlov, The Euler primes sieve (for the primes of form x^2+x+41; draft paper)
Formula
Let j = {-1;0;-2;1;-3;2;...;-(n+1);n}, m(-1) = 41, m(0) = 41, etc. (while j is negative, m(j) = A202018(-(j+1)); while j is nonnegative, m(j) = A202018(j)). Any term of a(n) could be written at least once as v(i,t+1,j) = m(j) * i^2 + b + ja, where i, t, and j are integers (j could be negative), i > 2; a = (i^2 - 2i) - 2i(t - 1), b = a - ((i^2 - 4)/4 - ((t - 1)^2 + 2(t - 1))), 0 < t < (i/2), while i is even; a = (i^2 - i) - 2i(t - 1), b = a - ((i^2 - 1)/4 - ((t - 1)^2 + (t - 1))), 0 < t < ((i + 1)/2), while i is odd (Note: v(i,1,j) = v(i,i/2,j), while i is even; v(i,1,j) = v(i,(i + 1)/2,j), while i is odd); at i = 2, v(2,1,j) = 4 * m(j) + 3 + 4j (at i = 2, we use only j < 0); at i = 1, v(1,1,j) = m(j) (at i = 1, we use only j >= 0; trivial).
Comments