A330676 Number of balanced reduced multisystems of weight n and maximum depth whose atoms cover an initial interval of positive integers.
1, 1, 2, 8, 70, 1012, 21944, 665708, 26917492, 1399033348, 90878863352, 7214384973908, 687197223963640, 77354805301801012, 10158257981179981304, 1539156284259756811748, 266517060496258245459352, 52301515332984084095078308, 11546416513975694879642736152
Offset: 0
Keywords
Examples
The a(0) = 1 through a(3) = 8 multisystems: {} {1} {1,1} {{1},{1,1}} {1,2} {{1},{1,2}} {{1},{2,2}} {{1},{2,3}} {{2},{1,1}} {{2},{1,2}} {{2},{1,3}} {{3},{1,2}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Row sums of A330778.
The case with all atoms equal is A000111.
The case with all atoms different is A006472.
The version allowing all depths is A330655.
The unlabeled version is A330663.
The version where the atoms are the prime indices of n is A330665.
The strongly normal version is A330675.
The version where the degrees are the prime indices of n is A330728.
Multiset partitions of normal multisets are A255906.
Series-reduced rooted trees with normal leaves are A316651.
Programs
-
Mathematica
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n, k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, for(i=n, #v, u[i] += v[i]*(-1)^(i-n)*binomial(i-1, n-1)); v=EulerT(v)); u} seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2020
Extensions
Terms a(8) and beyond from Andrew Howroyd, Dec 30 2019
Comments