A330694 Triangular array read by rows. T(n,k) is the number of k-normal elements in GF(2^n), n >= 1, 0 <= k <= n-1.
1, 2, 1, 3, 3, 1, 8, 4, 2, 1, 15, 15, 0, 0, 1, 24, 12, 18, 3, 5, 1, 49, 49, 0, 14, 14, 0, 1, 128, 64, 32, 16, 8, 4, 2, 1, 189, 189, 63, 63, 0, 0, 3, 3, 1, 480, 240, 240, 0, 30, 15, 15, 0, 2, 1, 1023, 1023, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1536, 768, 768, 384, 384, 96, 96, 24, 26, 7, 5, 1, 4095, 4095, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins 1; 2, 1; 3, 3, 1; 8, 4, 2, 1; 15, 15, 0, 0, 1; 24, 12, 18, 3, 5, 1; 49, 49, 0, 14, 14, 0, 1; 128, 64, 32, 16, 8, 4, 2, 1; 189, 189, 63, 63, 0, 0, 3, 3, 1; 480, 240, 240, 0, 30, 15, 15, 0, 2, 1; 1023, 1023, 0, 0, 0, 0, 0, 0, 0, 0, 1; 1536, 768, 768, 384, 384, 96, 96, 24, 26, 7, 5, 1; 4095, 4095, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
Links
- S. Huczynska, G. Mullen, D. Panario, and D. Thomson, Existences and properties of k-normal elements over finite fields, Finite Fields and Their Applications, 24 (2013), 170-183.
- Zülfükar Saygi, Ernist Tilenbaev, Çetin Ürtiş, On the number of k-normal elements over finite fields, Turk J Math., (2019) 43.795.812.
- David Thompson, Something about normal bases over finite fields, Existence and properties of k-normal elements over finite fields, Slides, (2013).
Crossrefs
Column k=0 gives A003473.
Programs
-
Mathematica
Needs["FiniteFields`"];Table[b = Map[GF[2^n][#] &, Tuples[{0, 1}, n]]; Table[Count[Table[MatrixRank[Table[b[[i]]^(2^k), {k, 0, n - 1}][[All, 1]], Modulus -> 2], {i, 2, 2^n}], k], {k, 1, n}] // Reverse, {n, 1, 8}] // Grid
Formula
T(n, k) = Sum_{h | x^n-1, deg(h) = n-k} phi_2(h) where phi_2(h) is the generalized Euler phi function and the polynomial division is in GF(2)[x].
Comments