cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330715 a(1), a(2), a(3) = 1; a(n) = (a(n-1) mod a(n-3)) + a(n-2) + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 6, 7, 10, 12, 16, 19, 24, 28, 34, 39, 46, 52, 60, 67, 76, 84, 94, 103, 114, 124, 136, 147, 160, 172, 186, 199, 214, 228, 244, 259, 276, 292, 310, 327, 346, 364, 384, 403, 424, 444, 466, 487, 510, 532, 556, 579, 604, 628, 654, 679, 706, 732
Offset: 1

Views

Author

Matthew Niemiro, Dec 27 2019

Keywords

Programs

  • Mathematica
    Nest[Append[#, Mod[#[[-1]], #[[-3]] ] + #[[-2]] + 1] &, {1, 1, 1}, 57] (* Michael De Vlieger, Dec 27 2019 *)
    nxt[{a_,b_,c_}]:={b,c,Mod[c,a]+b+1}; NestList[nxt,{1,1,1},60][[;;,1]] (* Harvey P. Dale, Jul 18 2025 *)
  • Python
    x = 1
    y = 1
    z = 1
    for i in range(4, 1001):
        new = z % x + y + 1
        print(str(i) +" " + str(new))
        x = y
        y = z
        z = new

Formula

a(1), a(2), a(3) = 1; a(n) = (a(n-1) mod a(n-3)) + a(n-2) + 1.
Conjectures from Colin Barker, Dec 28 2019: (Start)
G.f.: x*(1 - x - x^2 + 2*x^3 - x^4 + x^6 - 2*x^7 + 2*x^8) / ((1 - x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>9.
a(n) = (99 - 3*(-1)^n - 24*n + 2*n^2) / 8 for n>5.
(End)

Extensions

More terms from Michael De Vlieger, Dec 27 2019