A330728 Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.
1, 1, 1, 1, 1, 2, 2, 3, 7, 5, 5, 11, 16, 16, 27, 18, 61, 62, 272, 45, 123, 61, 1385, 105, 152, 272, 501, 211, 7936, 362
Offset: 1
Examples
The a(n) multisystems for n = 3, 6, 8, 9, 10, 12 (commas and outer brackets elided): 11 {1}{12} {1}{23} {{1}}{{1}{22}} {{1}}{{1}{12}} {{1}}{{1}{23}} {2}{11} {2}{13} {{11}}{{2}{2}} {{11}}{{1}{2}} {{11}}{{2}{3}} {3}{12} {{1}}{{2}{12}} {{1}}{{2}{11}} {{1}}{{2}{13}} {{12}}{{1}{2}} {{12}}{{1}{1}} {{12}}{{1}{3}} {{2}}{{1}{12}} {{2}}{{1}{11}} {{1}}{{3}{12}} {{2}}{{2}{11}} {{13}}{{1}{2}} {{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{3}{11}} {{23}}{{1}{1}} {{3}}{{1}{12}} {{3}}{{2}{11}}
Crossrefs
Programs
-
Mathematica
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
Comments