A330764 Number of series-reduced rooted trees whose leaves are sets with a total of n elements covering an initial interval of positive integers.
1, 3, 18, 194, 2944, 57959, 1398858, 39981994, 1320143478, 49439258516, 2070409961552, 95867076538834, 4863079990663528, 268198764863998103, 15977057268090388836, 1022415045656417706598, 69946606996018140613292, 5094427098628436561252367, 393558075509405403487404506
Offset: 1
Keywords
Examples
The a(3) = 18 trees: (123) ((1)(12)) ((1)(1)(1)) ((1)(23)) ((2)(12)) ((1)((1)(1))) ((2)(13)) ((1)(2)(2)) ((3)(12)) ((1)(1)(2)) ((1)(2)(3)) ((1)((2)(2))) ((1)((2)(3))) ((1)((1)(2))) ((2)((1)(3))) ((2)((1)(2))) ((3)((1)(2))) ((2)((1)(1)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Programs
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} R(n, k)={my(v=[]); for(n=1, n, v=concat(v, EulerT(concat(v, [binomial(k, n)]))[n])); v} seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)))}