cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330783 Number of set multipartitions (multisets of sets) of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Original entry on oeis.org

1, 1, 3, 8, 27, 94, 385, 1673, 8079, 41614, 231447, 1364697, 8559575, 56544465, 393485452, 2867908008, 21869757215, 173848026202, 1438593095272, 12360614782433, 110119783919367, 1015289796603359, 9674959683612989, 95147388659652754, 964559157655032720, 10067421615492769230
Offset: 0

Views

Author

Gus Wiseman, Jan 02 2020

Keywords

Comments

The (weakly) normal version is A116540.

Examples

			The a(1) = 1 through a(3) = 8 set multipartitions:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{1}}  {{1},{1,2}}
         {{1},{2}}  {{1},{2,3}}
                    {{2},{1,3}}
                    {{3},{1,2}}
                    {{1},{1},{1}}
                    {{1},{1},{2}}
                    {{1},{2},{3}}
The a(4) = 27 set multipartitions:
  {{1},{1},{1},{1}}  {{1},{1},{1,2}}  {{1},{1,2,3}}  {{1,2,3,4}}
  {{1},{1},{1},{2}}  {{1},{1},{2,3}}  {{1,2},{1,2}}
  {{1},{1},{2},{2}}  {{1},{2},{1,2}}  {{1,2},{1,3}}
  {{1},{1},{2},{3}}  {{1},{2},{1,3}}  {{1},{2,3,4}}
  {{1},{2},{3},{4}}  {{1},{2},{3,4}}  {{1,2},{3,4}}
                     {{1},{3},{1,2}}  {{1,3},{2,4}}
                     {{1},{3},{2,4}}  {{1,4},{2,3}}
                     {{1},{4},{2,3}}  {{2},{1,3,4}}
                     {{2},{3},{1,4}}  {{3},{1,2,4}}
                     {{2},{4},{1,3}}  {{4},{1,2,3}}
                     {{3},{4},{1,2}}
		

Crossrefs

Allowing edges to be multisets gives is A035310.
The strict case is A318402.
The constant case is A000005.
The (weakly) normal version is A116540.
Unlabeled set multipartitions are A049311.
Set multipartitions of prime indices are A050320.
Set multipartitions of integer partitions are A089259.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[Join@@mps/@strnorm[n],And@@UnsameQ@@@#&]],{n,0,5}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=WeighT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n)))/prod(i=1, #v, i^v[i]*v[i]!)}
    seq(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020