A330783 Number of set multipartitions (multisets of sets) of strongly normal multisets of size n, where a finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
1, 1, 3, 8, 27, 94, 385, 1673, 8079, 41614, 231447, 1364697, 8559575, 56544465, 393485452, 2867908008, 21869757215, 173848026202, 1438593095272, 12360614782433, 110119783919367, 1015289796603359, 9674959683612989, 95147388659652754, 964559157655032720, 10067421615492769230
Offset: 0
Keywords
Examples
The a(1) = 1 through a(3) = 8 set multipartitions: {{1}} {{1,2}} {{1,2,3}} {{1},{1}} {{1},{1,2}} {{1},{2}} {{1},{2,3}} {{2},{1,3}} {{3},{1,2}} {{1},{1},{1}} {{1},{1},{2}} {{1},{2},{3}} The a(4) = 27 set multipartitions: {{1},{1},{1},{1}} {{1},{1},{1,2}} {{1},{1,2,3}} {{1,2,3,4}} {{1},{1},{1},{2}} {{1},{1},{2,3}} {{1,2},{1,2}} {{1},{1},{2},{2}} {{1},{2},{1,2}} {{1,2},{1,3}} {{1},{1},{2},{3}} {{1},{2},{1,3}} {{1},{2,3,4}} {{1},{2},{3},{4}} {{1},{2},{3,4}} {{1,2},{3,4}} {{1},{3},{1,2}} {{1,3},{2,4}} {{1},{3},{2,4}} {{1,4},{2,3}} {{1},{4},{2,3}} {{2},{1,3,4}} {{2},{3},{1,4}} {{3},{1,2,4}} {{2},{4},{1,3}} {{4},{1,2,3}} {{3},{4},{1,2}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[Join@@mps/@strnorm[n],And@@UnsameQ@@@#&]],{n,0,5}]
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=WeighT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n)))/prod(i=1, #v, i^v[i]*v[i]!)} seq(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Dec 30 2020
Extensions
Terms a(10) and beyond from Andrew Howroyd, Dec 30 2020
Comments