A330794 Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.
1, -1, 1, 1, -2, 1, -1, 1, -3, 1, 1, 4, 2, -4, 1, -1, -7, 10, 4, -5, 1, 1, -14, -25, 16, 7, -6, 1, -1, 65, -21, -55, 21, 11, -7, 1, 1, -24, 196, -8, -98, 24, 16, -8, 1, -1, -367, -204, 400, 42, -154, 24, 22, -9, 1, 1, 774, -963, -688, 666, 148, -222, 20, 29, -10, 1
Offset: 0
Examples
Triangle starts: [0] 1; [1] -1, 1; [2] 1, -2, 1; [3] -1, 1, -3, 1; [4] 1, 4, 2, -4, 1; [5] -1, -7, 10, 4, -5, 1; [6] 1, -14, -25, 16, 7, -6, 1; [7] -1, 65, -21, -55, 21, 11, -7, 1; [8] 1, -24, 196, -8, -98, 24, 16, -8, 1; [9] -1, -367, -204, 400, 42, -154, 24, 22, -9, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- G. C. Greubel, SageMath code
Programs
-
Mathematica
m=30; A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x,0,m}, {t,0,m}], t], x]; M:= M= Table[If[k<=n, A322942[[n+1,k+1]], 0], {n,0,m}, {k,0,m}]; g:= g= Inverse[M]; A330794[n_, k_]:= g[[n+1,k+1]]; Table[A330794[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 20 2023 *)
-
Sage
# uses[riordan_array from A256893] Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1)) riordan_array(Jacobsthal, Jacobsthal, 10).inverse()
Formula
From G. C. Greubel, Sep 15 2023: (Start)
T(n, 0) = (-1)^n.
T(n, n) = 1.
T(n, n-1) = -n.
T(n, n-2) = A152947(n-1). (End)
Comments