cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330794 Inverse of the Jacobsthal triangle (A322942). Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, -1, 1, 1, -2, 1, -1, 1, -3, 1, 1, 4, 2, -4, 1, -1, -7, 10, 4, -5, 1, 1, -14, -25, 16, 7, -6, 1, -1, 65, -21, -55, 21, 11, -7, 1, 1, -24, 196, -8, -98, 24, 16, -8, 1, -1, -367, -204, 400, 42, -154, 24, 22, -9, 1, 1, 774, -963, -688, 666, 148, -222, 20, 29, -10, 1
Offset: 0

Views

Author

Peter Luschny, Jan 03 2020

Keywords

Comments

The inverse matrix of the Riordan square (cf. A321620) generated by (1 - 2*x^2)/((1 + x)*(1 - 2*x)).

Examples

			Triangle starts:
[0]   1;
[1]  -1,    1;
[2]   1,   -2,    1;
[3]  -1,    1,   -3,    1;
[4]   1,    4,    2,   -4,    1;
[5]  -1,   -7,   10,    4,   -5,    1;
[6]   1,  -14,  -25,   16,    7,   -6,    1;
[7]  -1,   65,  -21,  -55,   21,   11,   -7,    1;
[8]   1,  -24,  196,   -8,  -98,   24,   16,   -8,    1;
[9]  -1, -367, -204,  400,   42, -154,   24,   22,   -9,    1;
		

Crossrefs

Programs

  • Mathematica
    m=30;
    A322942:= CoefficientList[CoefficientList[Series[(1-2*t^2)/(1-(x+1)*t-2*t^2), {x,0,m}, {t,0,m}], t], x];
    M:= M= Table[If[k<=n, A322942[[n+1,k+1]], 0], {n,0,m}, {k,0,m}];
    g:= g= Inverse[M];
    A330794[n_, k_]:= g[[n+1,k+1]];
    Table[A330794[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 20 2023 *)
  • Sage
    # uses[riordan_array from A256893]
    Jacobsthal = (2*x^2 - 1)/((x + 1)*(2*x - 1))
    riordan_array(Jacobsthal, Jacobsthal, 10).inverse()

Formula

From G. C. Greubel, Sep 15 2023: (Start)
T(n, 0) = (-1)^n.
T(n, n) = 1.
T(n, n-1) = -n.
T(n, n-2) = A152947(n-1). (End)