cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330795 Evaluation of the polynomials given by the Riordan square of the Fibonacci sequence with a(0) = 1 (A193737) at 1/2 and normalized with 2^n.

Original entry on oeis.org

1, 3, 9, 39, 153, 615, 2457, 9831, 39321, 157287, 629145, 2516583, 10066329, 40265319, 161061273, 644245095, 2576980377, 10307921511, 41231686041, 164926744167, 659706976665, 2638827906663, 10555311626649, 42221246506599, 168884986026393, 675539944105575
Offset: 0

Views

Author

Peter Luschny, Jan 10 2020

Keywords

Crossrefs

Cf. A006131, A015521, A193737, A321620, A324969 (Fibonacci with a(0)=1).

Programs

  • Magma
    [1] cat [3*(4^n -(-1)^n)/5: n in [1..30]]; // G. C. Greubel, Sep 14 2023
    
  • Maple
    gf := (4*x^2 - 1)/(x*(4*x + 3) - 1): ser := series(gf, x, 32):
    seq(coeff(ser, x, n), n=0.. 25);
    # Alternative:
    gf:= (3/5)*exp(-x)*(exp(5*x) - 1) + 1: ser := series(gf, x, 32):
    seq(n!*coeff(ser, x, n), n=0.. 25);
    # Or:
    a := proc(n) option remember; if n < 3 then return [1, 3, 9][n + 1] fi;
    4*a(n-2) + 3*a(n-1) end: seq(a(n), n=0..25);
  • Mathematica
    LinearRecurrence[{3,4}, {1,3,9}, 31] (* G. C. Greubel, Sep 14 2023 *)
  • SageMath
    [3*(4^n -(-1)^n)//5 + int(n==0) for n in range(31)] # G. C. Greubel, Sep 14 2023

Formula

a(n) = 2^n*Sum_{k=0..n} A193737(n,k)/2^k.
a(n) = [x^n] (1 - 4*x^2)/(1 - x*(3 + 4*x)).
a(n) = n! [x^n] (3/5)*exp(-x)*(exp(5*x) - 1) + 1.
a(n) = 4*a(n-2) + 3*a(n-1).
a(n) = 3*A015521(n), n>0. - R. J. Mathar, Aug 19 2022