cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330796 a(n) = Sum_{k=0..n} binomial(n, k)*(2^k - binomial(k, floor(k/2))).

Original entry on oeis.org

0, 1, 4, 14, 46, 147, 462, 1437, 4438, 13637, 41746, 127426, 388076, 1179739, 3581052, 10856790, 32880942, 99496293, 300845658, 909073356, 2745419352, 8287110075, 25003877784, 75412396575, 227366950140, 685293578217, 2064924137152, 6220442229932, 18734334462598
Offset: 0

Views

Author

Peter Luschny, Jan 12 2020

Keywords

Crossrefs

Programs

  • Magma
    m:=40;
    R:=PowerSeriesRing(Rationals(), m+2);
    A330796:= func< n | Coefficient(R!( (1-x-Sqrt(1-3*x)*Sqrt(1+x))/(2*x*(1-3*x)) ), n) >;
    [A330796(n): n in [0..m]]; // G. C. Greubel, Sep 14 2023
    
  • Maple
    gf := exp(x)*(exp(2*x) - BesselI(0,2*x) - BesselI(1,2*x)):
    ser := series(gf, x, 32): seq(n!*coeff(ser, x, n), n=0..28);
    # Alternative:
    a := proc(n) option remember; if n < 3 then return n^2 fi;
    ((18-9*n)*a(n-3) - (3*n+3)*a(n-2) + (5*n+2)*a(n-1))/(n+1) end:
    seq(a(n), n=0..28);
    # Or:
    a := n -> add(binomial(n, k)*(2^k - binomial(k, floor(k/2))), k=0..n):
    seq(a(n), n=0..28);
  • Mathematica
    a[n_]:= Sum[k Binomial[n,k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, k+2, 4], {k,0,n}]; Table[a[n], {n,0,30}] (* Peter Luschny, May 24 2021 *)
    (* Second program *)
    A330796[n_]:= Coefficient[Series[(1-x-Sqrt[1-3*x]*Sqrt[1+x])/(2*x*(1- 3*x)), {x,0,50}], x, n];
    Table[A330796[n], {n,0,30}] (* G. C. Greubel, Sep 14 2023 *)
  • Maxima
    a(n):=(2*sum((-1)^j*binomial(2*j+1,j)*3^(n-j-1)*binomial(n+1,j+2),j,0,n-1))/(n+1); /* Vladimir Kruchinin, Sep 30 2020 */
    
  • SageMath
    m=40
    P. = PowerSeriesRing(ZZ, m+2)
    def A330796(n): return P( (1-x-sqrt(1-3*x)*sqrt(1+x))/(2*x*(1-3*x)) ).list()[n]
    [A330796(n) for n in range(m+1)] # G. C. Greubel, Sep 14 2023

Formula

a(n) = n! * [x^n] e^x*(e^(2*x) - I_{0}(2*x) - I_{1}(2*x)), where I_{n}(x) are the modified Bessel functions of the first kind.
a(n) = [x^n] (1 - x - sqrt(1 - 3*x)*sqrt(1 + x))/(2*x*(1 - 3*x)).
D-finite with recurrence a(n) = ((18-9*n)*a(n-3) - (3*n+3)*a(n-2) + (5*n+2)*a(n-1))/(n+1).
Sum_{k=0..n} binomial(n, k)*a(k) = A008549(n).
Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(k) = A045621(n).
a(n) = 2*Sum_{j=0..n-1} (-1)^j*C(2*j+1,j)*3^(n-j-1)*C(n+1,j+2)/(n+1). - Vladimir Kruchinin, Sep 30 2020
a(n) = Sum_{k=0..n} k*binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4). - Peter Luschny, May 24 2021
a(n) ~ 3^n * (1 - sqrt(3/(Pi*n))). - Vaclav Kotesovec, May 24 2021