A330809 Triangular numbers having exactly 8 divisors.
66, 78, 105, 136, 190, 231, 351, 406, 435, 465, 561, 595, 741, 861, 903, 946, 1378, 1431, 1653, 2211, 2278, 2485, 3081, 3655, 3741, 4371, 4465, 5151, 5253, 5995, 6441, 7021, 7503, 8515, 8911, 9453, 9591, 10011, 10153, 10585, 11026, 12561, 13366, 14878, 15051
Offset: 1
Keywords
Examples
Type (see cmts) Initial terms Notes ----- ------------------------ ----------------------------- 1 78, 406, 465, ... p*q*r such that 2*p*q + 1 = r 2 66, 190, 435, ... p*q*r such that 2*p*q - 1 = r 3 231, 561, 1653, ... p*q*r such that p*q + 1 = 2*r 4 105, 595, 741, ... p*q*r such that p*q - 1 = 2*r 5 136, 31375, 3544453, ... p^3*q such that 2*p^3 + 1 = q 6 1431, 1774977571, ... p^3*q such that 2*p^3 - 1 = q 7 351 (only) p^3*q such that p^3 - 1 = 2*q
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[k:k in [1..16000]| IsSquare(8*k+1) and NumberOfDivisors(k) eq 8]; // Marius A. Burtea, Jan 12 2020
-
Maple
select(t -> numtheory:-tau(t) = 8, [seq(i*(i+1)/2, i=1..1000)]); # Robert Israel, Jan 13 2020
-
Mathematica
Select[PolygonalNumber@ Range[180], DivisorSigma[0, #] == 8 &] (* Michael De Vlieger, Jan 11 2020 *)
-
PARI
isok(k) = ispolygonal(k, 3) && (numdiv(k) == 8); \\ Michel Marcus, Jan 11 2020
Comments