A330837
a(n) = M(n)^2*(M(n)+1)^2, where M(n) = A000668(n) is the n-th Mersenne prime.
Original entry on oeis.org
144, 3136, 984064, 264257536, 4502500182851584, 295143401596905324544, 75557575495813049614336, 21267647912751613342506514584526913536, 28269553036454149248812831358032474524823101898744619883661101506865659904
Offset: 1
If p=3, then a(2) = (7*2^3)^2 = 56^2, and the spectral basis of A330836(1) = 4704 and A330838(1) = 9408 is {63^2, 56^2, 48^2}, consisting of powers.
-
a := proc(n::posint)
local p, m;
p:=NumberTheory[IthMersenne](n);
m:=2^p-1;
return m^2*(m+1)^2;
end:
-
f[p_] := 2^(2p)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 12 2020 *)
-
forprime(p=1,999,isprime(2^p-1)&&print1((2^p-1)^2<<(2*p)",")) \\ M. F. Hasler, Feb 07 2020
A330838
Numbers of the form 2^(2*p)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.
Original entry on oeis.org
9408, 2952192, 792772608, 13507500548554752, 885430204790715973632, 226672726487439148843008, 63802943738254840027519543753580740608, 84808659109362447746438494074097423574469305696233859650983304520596979712
Offset: 1
If p = 3, then M_3 = 7 and a(1) = 2^(2*3)*3*7^2 = 9408, with spectral basis {63^2, 56^2, 48^2}, and spectral sum equal to 1*9408 + 1 = 9409. However, {63^2, 56^2, 48^2} is also the spectral basis of A330836(1) = 4704, with spectral sum equal to 2*4704+1.
-
a := proc(n::posint)
local p, m;
p:=NumberTheory[IthMersenne](n+1);
m:=2^p-1;
return 2^(2*p)*3*m^2;
end:
-
f[p_] := 2^(2p)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 17 2020 *)
A330840
a(n) = 4*M(n)^2*(M(n)+1)^2, where M(n) is the n-th Mersenne prime, A000668.
Original entry on oeis.org
576, 12544, 3936256, 1057030144, 18010000731406336, 1180573606387621298176, 302230301983252198457344, 85070591651006453370026058338107654144, 113078212145816596995251325432129898099292407594978479534644406027462639616
Offset: 1
a(2) = 4*7^2*2^(2*3) = 2^8*7^2 = 112^2, and the spectral basis of A330839(1) = 18816 is {63^2, 112^2, 48^2}, consisting only of powers.
-
A330840 := proc(n::posint)
local p, m;
p:=NumberTheory[IthMersenne](n);
m:=2^p-1;
return 4*m^2*(m+1)^2;
end:
-
f[p_] := 2^(2*p + 2)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[9] (* Amiram Eldar, Jan 24 2020 *)
Showing 1-3 of 3 results.
Comments