cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A330837 a(n) = M(n)^2*(M(n)+1)^2, where M(n) = A000668(n) is the n-th Mersenne prime.

Original entry on oeis.org

144, 3136, 984064, 264257536, 4502500182851584, 295143401596905324544, 75557575495813049614336, 21267647912751613342506514584526913536, 28269553036454149248812831358032474524823101898744619883661101506865659904
Offset: 1

Views

Author

Walter Kehowski, Jan 12 2020

Keywords

Comments

a(n+1) is the second element of the power-spectral basis of both A330836(n) and A330838(n). Also, a(n) = A139256(n)^2, where A139256(n) is the sum of the divisors of the n-th perfect number, A000396(n).
Also: squares of twice the perfect numbers. - M. F. Hasler, Feb 07 2020

Examples

			If p=3, then a(2) = (7*2^3)^2 = 56^2, and the spectral basis of A330836(1) = 4704 and A330838(1) = 9408 is {63^2, 56^2, 48^2}, consisting of powers.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n);
      m:=2^p-1;
      return m^2*(m+1)^2;
    end:
  • Mathematica
    f[p_] := 2^(2p)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 12 2020 *)
  • PARI
    forprime(p=1,999,isprime(2^p-1)&&print1((2^p-1)^2<<(2*p)",")) \\ M. F. Hasler, Feb 07 2020

Formula

a(n) = A330824(n) * A133049(n).
a(n) = (2*A000396(n))^2 = (2^p-1)^2*4^p with p = A000043(n). - M. F. Hasler, Feb 07 2020

A330838 Numbers of the form 2^(2*p)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.

Original entry on oeis.org

9408, 2952192, 792772608, 13507500548554752, 885430204790715973632, 226672726487439148843008, 63802943738254840027519543753580740608, 84808659109362447746438494074097423574469305696233859650983304520596979712
Offset: 1

Views

Author

Walter Kehowski, Jan 17 2020

Keywords

Comments

a(n) has the same spectral basis as A330836(n), namely {M_p^2*(M_p+2)^2, M_p^2*(M_p+1)^2, (M_p^2-1)^2}, so the two numbers are isospectral as well as power-spectral, that is, they have the same spectral basis and that basis consists of powers. The spectral sum of a(n), that is, the sum of the elements of its spectral basis, is 1*a(n)+1, while the spectral sum of A330836(n) is 2*A330836(n)+1. We say that a(n) and A330836(n) form an isospectral pair, with a(n) of index 1 and A330836(n) of index 2.
Subsequence of Zumkeller numbers (A083207), since a(n) = 2^r * 3 * s, where s is relatively prime to 6. - Ivan N. Ianakiev, Feb 03 2020

Examples

			If p = 3, then M_3 = 7 and a(1) = 2^(2*3)*3*7^2 = 9408, with spectral basis {63^2, 56^2, 48^2}, and spectral sum equal to 1*9408 + 1 = 9409. However, {63^2, 56^2, 48^2} is also the spectral basis of A330836(1) = 4704, with spectral sum equal to 2*4704+1.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n+1);
      m:=2^p-1;
      return 2^(2*p)*3*m^2;
    end:
  • Mathematica
    f[p_] := 2^(2p)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9]  (* Amiram Eldar, Jan 17 2020 *)

Formula

a(n) = A330824(n+1) * 3 * A133049(n+1).

A330840 a(n) = 4*M(n)^2*(M(n)+1)^2, where M(n) is the n-th Mersenne prime, A000668.

Original entry on oeis.org

576, 12544, 3936256, 1057030144, 18010000731406336, 1180573606387621298176, 302230301983252198457344, 85070591651006453370026058338107654144, 113078212145816596995251325432129898099292407594978479534644406027462639616
Offset: 1

Views

Author

Walter Kehowski, Jan 23 2020

Keywords

Comments

Also a(n+1) is the second element of the power-spectral basis of A330839(n), where by power-spectral we mean that the spectral basis consists of primes and powers.

Examples

			a(2) = 4*7^2*2^(2*3) = 2^8*7^2 = 112^2, and the spectral basis of A330839(1) = 18816 is {63^2, 112^2, 48^2}, consisting only of powers.
		

Crossrefs

Programs

  • Maple
    A330840 := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n);
      m:=2^p-1;
      return 4*m^2*(m+1)^2;
    end:
  • Mathematica
    f[p_] := 2^(2*p + 2)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[9] (* Amiram Eldar, Jan 24 2020 *)

Formula

a(n) = 4 * A133049(n) * A330824(n).
Showing 1-3 of 3 results.