cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A331929 The number of regions inside a pentagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.

Original entry on oeis.org

11, 170, 1161, 3900, 10741, 22380, 44491, 76610, 126336, 194070, 290651, 410860, 577721, 779340, 1035676, 1345030, 1730696, 2176040, 2724036, 3345880, 4087656, 4933200, 5921991, 7018210, 8300896, 9723300, 11339151, 13122120, 15150271, 17345140, 19843056
Offset: 1

Views

Author

Keywords

Comments

The terms are from numeric computation - no formula for a(n) is currently known.

Crossrefs

Cf. A331939 (n-gons), A329710 (edges), A330847 (vertices), A007678, A092867, A331452, A331931.

Extensions

a(9) and beyond from Lars Blomberg, May 11 2020

A329710 The number of edges inside a pentagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.

Original entry on oeis.org

20, 290, 2215, 7405, 21150, 43490, 88230, 151135, 250825, 384360, 578840, 814180, 1151525, 1550530, 2063225, 2676925, 3452460, 4333340, 5436210, 6668320, 8154980, 9837690, 11822175, 13993360, 16569650, 19401865, 22636495, 26182350, 30253225, 34608450, 39628050
Offset: 1

Views

Author

Keywords

Comments

See the links in A331929 for images of the pentagons.

Crossrefs

Cf. A331929 (regions), A331939 (n-gons), A330847 (vertices), A330845, A274586, A332600, A331765.

Extensions

a(9) and beyond from Lars Blomberg, May 11 2020

A331939 Triangle read by rows: Take a pentagon with all diagonals drawn, as in A331929. Then T(n,k) = number of k-sided polygons in that figure for k = 3, 4, ..., n+5.

Original entry on oeis.org

10, 0, 1, 0, 120, 40, 10, 0, 0, 605, 290, 166, 95, 0, 5, 1750, 1420, 550, 150, 30, 0, 0, 4315, 3740, 1920, 640, 95, 20, 5, 6, 9370, 7950, 3610, 1200, 220, 20, 10, 0, 0, 17290, 15705, 7991, 2885, 520, 75, 20, 5, 0, 0, 29590, 28130, 13560, 4320, 860, 150, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

See the links in A331929 for images of the pentagons.

Examples

			A pentagon with no other points along its edges, n = 1, contains 10 triangles, 1 pentagon and no other n-gons, so the first row is [10,0,1,0]. A pentagon with 1 point dividing its edges, n = 2, contains 120 triangles, 40 quadrilaterals, 10 pentagons and no other n-gons, so the second row is [120, 40, 10, 0, 0].
Triangle begins:
  10,0,1,0
  120,40,10,0,0
  605,290,166,95,0,5
  1750,1420,550,150,30,0,0
  4315,3740,1920,640,95,20,5,6
  9370,7950,3610,1200,220,20,10,0,0
  17290,15705,7991,2885,520,75,20,5,0,0
  29590,28130,13560,4320,860,150,0,0,0,0,0
The row sums are A331929.
		

Crossrefs

Cf A331929 (regions), A329710 (edges), A330847 (vertices), A331931, A331906, A007678, A092867, A331452.

A335554 a(n) is the number of vertices formed by n-secting the angles of a pentagon.

Original entry on oeis.org

5, 11, 10, 46, 135, 71, 280, 266, 325, 456, 710, 506, 985, 981, 1085, 1291, 1725, 1091, 2140, 2121, 2310, 2586, 3180, 2706, 3750, 3726, 3955, 4341, 5090, 4436, 5825, 5761, 6060, 6531, 7455, 6241, 8290, 8276, 8620, 9146, 10270, 9326, 11245, 11206, 11615, 12241
Offset: 1

Views

Author

Lars Blomberg, Jun 20 2020

Keywords

Comments

See A335553 for illustrations.

Crossrefs

Cf. A330847 (n-sected sides, not angles), A335553 (regions), A335555 (edges), A335556 (ngons).

A367322 Table read by antidiagonals: Place k equally spaced points on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives the number of vertices in the resulting planar graph.

Original entry on oeis.org

3, 10, 5, 58, 37, 10, 178, 257, 121, 19, 558, 817, 1055, 301, 42, 1255, 2757, 3506, 1753, 708, 57, 2532, 4825, 10410, 6913, 5369, 1145, 135, 4786, 12293, 21111, 17713, 17417, 8417, 2395, 171, 7804, 19241, 43740, 38497, 47796, 29121, 16434, 3581, 341
Offset: 3

Views

Author

Keywords

Comments

See A367323 and the cross references for further images of the n-gons.

Examples

			The table begins:
3, 10, 58, 178, 558, 1255, 2532, 4786, 7804, 12292, 18966, 28540, 39117, 56107, ...
5, 37, 257, 817, 2757, 4825, 12293, 19241, 33549, 49577, 87685, 101981, 178465, ...
10, 121, 1055, 3506, 10410, 21111, 43740, 74526, 124490, 190291, 288190, ...
19, 301, 1753, 6913, 17713, 38497, 80473, 139927, 225595, 356329, 549967, ...
42, 708, 5369, 17417, 47796, 99261, 194278, 331955, 546805, 833946, 1245314, ...
57, 1145, 8417, 29121, 80345, 167105, 333297, 570969, 939113, 1441153, 2153937, ...
135, 2395, 16434, 53155, 141147, 293374, 565767, 966493, 1580940, 2411533, ...
171, 3581, 23651, 80191, 213041, 444251, 862711, 1481141, 2413721, 3701951, ...
341, 6062, 39248, 126061, 329131, 684223, 1307845, 2233815, 3639020, 5549952, ...
313, 7513, 47293, 167941, 450457, 931345, 1830625, 3132349, 5103589, 7825201, ...
728, 12845, 79859, 255711, 660140, 1372008, 2608476, 4454477, 7236853, ...
771, 16871, 103517, 343855, 881959, 1847525, 3504971, 6013953, 9739227, ...
1380, 24136, 145635, 465721, 1192710, 2478121, 4694040, 8014891, 12995535, ...
1393, 30305, 182785, 602337, 1533681, 3211873, 6067041, 10402769, 16824161, ...
2397, 41583, 245684, 783803, 1995341, 4145230, 7829333, 13366897, ...
1855, 46801, 291637, 967123, 2476873, 5166055, 9798175, ...
3895, 67090, 389690, 1241765, 3146533, 6535659, 12317567, ...
3861, 80921, 466141, 1522001, 3840181, 8027441, 15094521, ...
6006, 102817, 589029, 1875511, 4734786, 9833104, ...
5963, 122849, 694387, 2259005, 5671887, 11852105, ...
8878, 151180, 856589, 2725041, 6858600, 14242153, ...
7321, 169297, 979777, 3205921, 8068321, ...
12675, 214851, 1206050, 3834451, 9626475, ...
.
.
.
		

Crossrefs

Cf. A367323 (regions), A367324 (edges), A274585 (1st row), A331449 (2nd row), A330847 (3rd row), A330846 (4th row), A333113 (5th row), A333109 (6th row), A332428 (7th row), A332418 (8th row), A007569 (1st column).

Formula

T(n,k) = A367324(n,k) - A367323(n,k) + 1 (Euler).
Showing 1-5 of 5 results.