A331929
The number of regions inside a pentagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
11, 170, 1161, 3900, 10741, 22380, 44491, 76610, 126336, 194070, 290651, 410860, 577721, 779340, 1035676, 1345030, 1730696, 2176040, 2724036, 3345880, 4087656, 4933200, 5921991, 7018210, 8300896, 9723300, 11339151, 13122120, 15150271, 17345140, 19843056
Offset: 1
- Lars Blomberg, Table of n, a(n) for n = 1..35
- Scott R. Shannon, Pentagon regions for n = 1.
- Scott R. Shannon, Pentagon regions for n = 2.
- Scott R. Shannon, Pentagon regions for n = 3.
- Scott R. Shannon, Pentagon regions for n = 4.
- Scott R. Shannon, Pentagon regions for n = 5.
- Scott R. Shannon, Pentagon regions for n = 6.
- Scott R. Shannon, Pentagon regions for n = 7.
- Scott R. Shannon, Pentagon regions for n = 8.
- Scott R. Shannon, Pentagon regions for n = 5, random distance-based coloring.
- Scott R. Shannon, Pentagon regions for n = 6, random distance-based coloring
- Wikipedia, Pentagon.
A329710
The number of edges inside a pentagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
20, 290, 2215, 7405, 21150, 43490, 88230, 151135, 250825, 384360, 578840, 814180, 1151525, 1550530, 2063225, 2676925, 3452460, 4333340, 5436210, 6668320, 8154980, 9837690, 11822175, 13993360, 16569650, 19401865, 22636495, 26182350, 30253225, 34608450, 39628050
Offset: 1
A330847
The number of vertices inside a pentagon formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts.
Original entry on oeis.org
10, 121, 1055, 3506, 10410, 21111, 43740, 74526, 124490, 190291, 288190, 403321, 573805, 771191, 1027550, 1331896, 1721765, 2157301, 2712175, 3322441, 4067325, 4904491, 5900185, 6975151, 8268755, 9678566, 11297345, 13060231, 15102955, 17263311, 19784995
Offset: 1
A335556
Irregular table read by rows: n-sect the angles of a pentagon. Then T(n,k) is the number of k-sided polygons in that figure for k >= 3.
Original entry on oeis.org
0, 0, 1, 10, 10, 0, 1, 50, 10, 50, 60, 15, 5, 0, 0, 0, 1, 60, 30, 110, 125, 30, 0, 0, 5, 5, 1, 150, 140, 20, 150, 90, 70, 10, 5, 0, 0, 1, 240, 200, 60, 10, 230, 355, 75, 40, 0, 5, 0, 1, 300, 190, 80, 10, 360, 400, 175, 25, 10, 10, 0, 1, 460, 430, 150, 30
Offset: 1
The table begins
0, 0, 1;
10;
10, 0, 1;
50, 10;
50, 60, 15, 5, 0, 0, 0, 1;
60, 30;
110, 125, 30, 0, 0, 5, 5, 1;
150, 140, 20;
150, 90, 70, 10, 5, 0, 0, 1;
240, 200, 60, 10;
230, 355, 75, 40, 0, 5, 0, 1;
300, 190, 80, 10;
360, 400, 175, 25, 10, 10, 0, 1;
460, 430, 150, 30;
Showing 1-4 of 4 results.
Comments