cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330862 Decimal expansion of Product_{k>=1} (1 - 1/(-2)^k).

Original entry on oeis.org

1, 2, 1, 0, 7, 2, 4, 1, 3, 0, 3, 0, 1, 0, 5, 9, 1, 8, 0, 1, 3, 6, 1, 7, 2, 8, 5, 6, 1, 0, 5, 9, 0, 5, 0, 4, 6, 3, 6, 8, 0, 4, 1, 6, 3, 1, 1, 2, 3, 1, 3, 7, 6, 4, 3, 4, 7, 6, 1, 5, 9, 2, 4, 5, 5, 4, 0, 0, 0, 6, 8, 7, 5, 6, 5, 9, 1, 8, 4, 5, 0, 4, 9, 9, 1, 6, 5, 0, 7, 6, 1, 0, 1, 3, 3, 5, 5, 5, 3, 9, 5, 3, 9, 9, 6, 4, 6, 3, 3, 0, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 + 1/2) * (1 - 1/2^2) * (1 + 1/2^3) * (1 - 1/2^4) * (1 + 1/2^5) * ... = 1.2107241303010591801361728561...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1/2, -1/2], 10, 111] [[1]]
    N[QPochhammer[-2, 1/4]*QPochhammer[1/4]/3, 120] (* Vaclav Kotesovec, Apr 28 2020 *)
  • PARI
    prodinf(k=1, 1 - 1/(-2)^k) \\ Michel Marcus, Apr 28 2020

Formula

Equals Product_{k>=1} (4^k - 1)*(4^k + 2)/4^(2*k).
Equals exp(-Sum_{k>=1} A000203(k)/(k*(-2)^k)).