A330876 Denominator of the fraction fr(n) that appears in the n-th cumulant k(n) = fr(n) - (-2)^n*(n-1)!*zeta(n) of the limiting distribution of the number of comparisons in quicksort, for n >= 2, starting with fr(0) = 1 and fr(1) = 0.
1, 1, 1, 1, 9, 108, 2700, 81000, 14883750, 347287500, 9724050000, 36756909000000, 466996528845000000, 6472571889791700000000, 1082926002881049327000000000, 13008107146607164515924000000000
Offset: 0
Examples
The first few fractions fr(n) are: 1, 0, 7, -19, 937/9, -85981/108, 21096517/2700, -7527245453/81000, 19281922400989/14883750, -7183745930973701/347287500, ...
References
- Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991), p. 83.
Links
- Petros Hadjicostas, Table of n, a(n) for n = 0..30
- S. B. Ekhad and D. Zeilberger, A detailed analysis of quicksort running time, arXiv:1903.03708 [math.PR], 2019. [They have the first eight moments for the number of comparisons in quicksort from which Hennequin's first eight asymptotic cumulants can be derived.]
- Steven Finch, Recursive PGFs for BSTs and DSTs, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives the constants a_s = fr(n) for s >= 2.]
- P. Hennequin, Combinatorial analysis of the quicksort algorithm, Informatique théoretique et applications, 23(3) (1989), 317-333. [He made the first conjectures about fr(n).]
- M. E. Hoffman and M. Kuba, Logarithmic integrals, zeta values, and tiered binomial coefficients, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They study the constants a_s = fr(n) for s >= 2.]
- Kok Hooi Tan and Petros Hadjicostas, Density and generating functions of a limiting distribution in quicksort, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see p. 10 for the constants A(n) = fr(n)/(-2)^n.
Comments