A329001
Numerator of the rational constant term c(n) of the n-th moment mu(n) of the limiting distribution of the number of comparisons in quicksort (for n >= 0).
Original entry on oeis.org
1, 0, 7, -19, 2260, -229621, 74250517, -30532750703, 90558126238639, -37973078754146051, 21284764359226368337, -1770024989560214080011109, 539780360793818428471498394131, -194520883210026428577888559667954807, 911287963487139630688627952818633149408727
Offset: 0
The first few c(n) are {1, 0, 7, -19, 2260/9, -229621/108, 74250517/2700, -30532750703/81000, 90558126238639/14883750, -37973078754146051/347287500, ...}.
- Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991).
- Petros Hadjicostas, Table of n, a(n) for n = 0..25
- S. B. Ekhad and D. Zeilberger, A detailed analysis of quicksort running time, arXiv:1903.03708 [math.PR], 2019. [They have the first eight moments for the number of comparisons in quicksort from which the first eight asymptotic moments mu(n) can be derived.]
- James A. Fill and Svante Janson, Smoothness and decay properties of the limiting Quicksort density function, In: D. Gardy and A. Mokkadem (eds), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 53-64.
- James A. Fill and Svante Janson, Quicksort asymptotics, Journal of Algorithms, 44(1) (2002), 4-28.
- Steven Finch, Recursive PGFs for BSTs and DSTs, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives a Mathematica program to generate the constants c(n).]
- P. Hennequin, Combinatorial analysis of the quicksort algorithm, Informatique théoretique et applications, 23(3) (1989), 317-333. [He derives some of the asymptotic moments mu(n) whose constant terms are the c(n)'s.]
- M. E. Hoffman and M. Kuba, Logarithmic integrals, zeta values, and tiered binomial coefficients, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They give a formula for the constants c(n).]
- Mireille Régnier, A limiting distribution for quicksort, Informatique théorique et applications, 23(3) (1989), 335-343.
- Uwe Rösler, A limit theorem for quicksort, Informatique théorique et applications, 25(1) (1991), 85-100. [In Section 5, he gives a recursion for the moments mu(n), which potentially can be used to find the constants c(n), but he does not do any explicit calculations.]
- Kok Hooi Tan and Petros Hadjicostas, Density and generating functions of a limiting distribution in quicksort, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see pp. 9-11.
- Kok Hooi Tan and Petros Hadjicostas, Some properties of a limiting distribution in Quicksort, Statistics and Probability Letters, 25(1) (1995), 87-94.
- Vytas Zacharovas, On the exponential decay of the characteristic function of the quicksort distribution, arXiv:1605.04018 [math.CO], 2016.
Cf.
A063090,
A067699,
A093418,
A096620,
A115107,
A288964,
A288965,
A288970,
A288971,
A330852,
A330860,
A330875,
A330876 (denominators).
-
# The function A is defined in A330852.
# Produces the constants c(n):
c := proc(p) local v, a: option remember:
if p = 0 then v := 1; end if: if p = 1 then v := 0: end if:
if 2 <= p then v := (p - 1)!*add((-2)^(a + 1)*A(a + 1)*c(p - 1 - a)/(a!*(p - 1 - a)!), a = 0 .. p - 1): end if:
v: end proc:
# Produces the numerators of c(n):
seq(numer(c(n)), n=0..15);
-
(* The function A is defined in A330852. *)
c[p_] := c[p] = Module[{v, a}, If[p == 0, v = 1;]; If[p == 1, v = 0]; If[2 <= p, v = (p - 1)!*Sum[(-2)^(a + 1)*A[a + 1]*c[p - 1 - a]/(a!*(p - 1 - a)!), {a, 0, p - 1}]]; v];
Table[Numerator[c[n]], {n, 0, 15}] (* Jean-François Alcover, Mar 28 2021, after Maple code *)
A330875
Numerator of the fraction fr(n) that appears in the n-th cumulant k(p) = fr(n) - (-2)^n*(n-1)!*zeta(n) of the limiting distribution of the number of comparisons in quicksort, for n >= 2, starting with fr(0) = 1 and fr(1) = 0.
Original entry on oeis.org
1, 0, 7, -19, 937, -85981, 21096517, -7527245453, 19281922400989, -7183745930973701, 3616944955616896387, -273304346447259998403709, 76372354431694636659849988531, -25401366514997931592208126670898607, 110490677504100075544188675746430710672527
Offset: 0
The first few fractions fr(n) are 1, 0, 7, -19, 937/9, -85981/108, 21096517/2700, -7527245453/81000, 19281922400989/14883750, -7183745930973701/347287500, ...
- Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991), p. 83.
- Petros Hadjicostas, Table of n, a(n) for n = 0..30
- S. B. Ekhad and D. Zeilberger, A detailed analysis of quicksort running time, arXiv:1903.03708 [math.PR], 2019. [They have the first eight moments for the number of comparisons in quicksort from which Hennequin's first eight asymptotic cumulants can be derived.]
- Steven Finch, Recursive PGFs for BSTs and DSTs, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives the constants a_s = fr(n) for s >= 2.]
- P. Hennequin, Combinatorial analysis of the quicksort algorithm, Informatique théoretique et applications, 23(3) (1989), 317-333. [He made the first conjectures about fr(n).]
- M. E. Hoffman and M. Kuba, Logarithmic integrals, zeta values, and tiered binomial coefficients, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They study the constants a_s = fr(n) for s >= 2.]
- Kok Hooi Tan and Petros Hadjicostas, Density and generating functions of a limiting distribution in quicksort, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see p. 10 for the constants A(n) = fr(n)/(-2)^n.
Cf.
A063090,
A067699,
A093418,
A096620,
A115107,
A288964,
A288965,
A288970,
A288971,
A329001,
A330852,
A330860,
A330876 (denominators),
A330895,
A330907.
A330895
Numerator of the variance of the random number of comparisons in quicksort applied to lists of length n.
Original entry on oeis.org
0, 0, 0, 2, 29, 46, 3049, 60574, 160599, 182789, 4913659, 1072364, 975570703, 1039388677, 5491155875, 92211937094, 6954047816459, 7225392149719, 2699717387790739, 2785123121790325, 573031978700759, 84009502802237, 45510401082365873, 46518885869845328
Offset: 0
The variances are: 0, 0, 0, 2/9, 29/36, 46/25, 3049/900, 60574/11025, 160599/19600, 182789/15876, 4913659/317520, 1072364/53361, ... = A330895/A330907.
- D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, 1973; see answer to Ex. 8(a) of Section 6.2.2.
Cf.
A063090,
A067699,
A093418,
A096620,
A115107,
A288964,
A288965,
A288970,
A288971,
A329001,
A330852,
A330860,
A330875,
A330876,
A330907 (denominators).
-
lista(nn) = {my(va = vector(nn)); for(n=1, nn, va[n] = numerator(n*(7*n+13) - 2*(n+1)*sum(k=1, n, 1/k) - 4*(n+1)^2*sum(k=1, n, 1/k^2))); concat(0,va);}
A330907
Denominator of the variance of the random number of comparisons in quicksort applied to lists of length n.
Original entry on oeis.org
1, 1, 1, 9, 36, 25, 900, 11025, 19600, 15876, 317520, 53361, 38419920, 33127380, 144288144, 2029052025, 129859329600, 115831315600, 37529346254400, 33870234994596, 6144260316480, 799769421360, 387088399938240, 355503061748835, 40953952713465792, 37864231428870000, 316002721554520000, 2056839142975402500, 1612561888092715560000
Offset: 0
The variances are: 0, 0, 0, 2/9, 29/36, 46/25, 3049/900, 60574/11025, 160599/19600, 182789/15876, 4913659/317520, 1072364/53361, ... = A330895/A330907.
- D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, 1973; see answer to Ex. 8(a) of Section 6.2.2.
Cf.
A063090,
A067699,
A093418,
A096620,
A115107,
A288964,
A288965,
A288970,
A288971,
A329001,
A330852,
A330860,
A330875,
A330876,
A330895 (numerators).
-
a := n -> denom(2*(n+1)*(harmonic(n,1) + 2*(n+1)*harmonic(n,2))):
seq(a(n), n=0..28); # Peter Luschny, May 02 2020
-
lista(nn) = {my(va = vector(nn)); for(n=1, nn, va[n] = denominator(n*(7*n+13) - 2*(n+1)*sum(k=1, n, 1/k) - 4*(n+1)^2*sum(k=1, n, 1/k^2))); concat(1, va); }
A335990
The moment generating function of the limiting distribution of the number of comparisons in quicksort can be written in the form M(t) = m(-2*t)/(exp(2*gamma*t)*Gamma(1 + 2*t)) for |t| < 1/2, where m(z) = Sum_{n >= 0} B(n)*z^n/n! for |z| < 1. This sequence gives the numerators of the rational numbers B(n) for n >= 0.
Original entry on oeis.org
1, 0, 7, 19, 565, 229621, 74250517, 30532750703, 90558126238639, 37973078754146051, 21284764359226368337, 1770024989560214080011109, 539780360793818428471498394131, 194520883210026428577888559667954807, 911287963487139630688627952818633149408727, 328394760901508739430228985010652235796369497219
Offset: 0
The first few fractions are 1/1, 0/1, 7/4, 19/8, 565/36, 229621/3456, 74250517/172800, 30532750703/10368000, 90558126238639/3810240000, ... = A335990/A335991.
- Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991), p. 83.
- S. B. Ekhad and D. Zeilberger, A detailed analysis of quicksort running time, arXiv:1903.03708 [math.PR], 2019. [They have the first eight moments for the number of comparisons in quicksort from which Hennequin's first eight asymptotic cumulants can be derived.]
- James A. Fill and Svante Janson, Smoothness and decay properties of the limiting Quicksort density function, In: D. Gardy and A. Mokkadem (eds), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 53-64.
- James A. Fill and Svante Janson, Quicksort asymptotics, Journal of Algorithms, 44(1) (2002), 4-28.
- Steven Finch, Recursive PGFs for BSTs and DSTs, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives the constants a_s = (-2)^s*A(s) for s >= 2. He also evaluates c(2) - c(8), where c(n) = B(n)*(-2)^n.]
- P. Hennequin, Combinatorial analysis of the quicksort algorithm, Informatique théoretique et applications, 23(3) (1989), 317-333.
- M. E. Hoffman and M. Kuba, Logarithmic integrals, zeta values, and tiered binomial coefficients, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They study the constants a_s = (-2)^s*A(s) = (-2)^s*L_n(B(1),...,B(s)) = (-2)^s*A330852(s)/A330860(s) for s >= 2. They also study the constants c(n) = B(n)*(-2)^n = A329001(n)/A330876(n).]
- Mireille Régnier, A limiting distribution for quicksort, Informatique théorique et applications, 23(3) (1989), 335-343.
- Uwe Rösler, A limit theorem for quicksort, Informatique théorique et applications, 25(1) (1991), 85-100. [He proved that M(t) has a Taylor expansion around t = 0 with an infinite radius of convergence.]
- Kok Hooi Tan and Petros Hadjicostas, Density and generating functions of a limiting distribution in quicksort, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see pp. 8-11.
- Kok Hooi Tan and Petros Hadjicostas, Some properties of a limiting distribution in Quicksort, Statistics and Probability Letters, 25(1) (1995), 87-94.
- Vytas Zacharovas, On the exponential decay of the characteristic function of the quicksort distribution, arXiv:1605.04018 [math.CO], 2016. [The author studies the tail of phi(t) = M(i*t), where i = sqrt(-1).]
Cf.
A001620,
A063090,
A067699,
A093418,
A096620,
A115107,
A288964,
A288965,
A288970,
A288971,
A329001 (numerators of B(n)*(-2)^n),
A330852 (numerators of A(n)),
A330860 (denominators of A(n)),
A330876 (denominators of B(n)*(-2)^n),
A335991 (denominators of B(n)).
-
For a fast Maple program for the calculation of the numbers (B(n): n >= 0), see A330852.
-
/* Very slow program due to recursion */
g(k) = sum(a=0, k, (-1)^a*B(k - a)/(a!*(k - a)!*2^a));
f(r) = sum(i=0, r, stirling(r + 1, i + 1, 1)*g(r - i));
b(p) = (-1)^p*(sum(r=1, p, stirling(p + 2, r + 1, 1)*B(p - r)/(p - r)!) + sum(rr=1, p-1, f(rr)*f(p - rr)) + 2*(-1)^p*p!*sum(a=1, p, (-1)^a*B(p - a)/(a!*(p - a)!*2^a)) + 2*sum(i=1, p, stirling(p + 1, i + 1, 1)*g(p - i)))/(p - 1);
B(m) = if(m==0, 1, if(m==1, 0, b(m)));
a(n) = numerator(B(n));
A335991
The moment generating function of the limiting distribution of the number of comparisons in quicksort can be written in the form M(t) = m(-2*t)/(exp(2*gamma*t)*Gamma(1 + 2*t)) for |t| < 1/2, where m(z) = Sum_{n >= 0} B(n)*z^n/n! for |z| < 1. This sequence gives the denominators of the rational numbers B(n) for n >= 0.
Original entry on oeis.org
1, 1, 4, 8, 36, 3456, 172800, 10368000, 3810240000, 177811200000, 9957427200000, 75278149632000000, 1912817782149120000000, 53023308921173606400000000, 17742659631203112173568000000000, 426249654980023566857797632000000000
Offset: 0
The first few fractions are 1/1, 0/1, 7/4, 19/8, 565/36, 229621/3456, 74250517/172800, 30532750703/10368000, 90558126238639/3810240000, ... = A335990/A335991.
- Pascal Hennequin, Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche, Ph.D. Thesis, L'École Polytechnique Palaiseau (1991), p. 83.
- James A. Fill and Svante Janson, Smoothness and decay properties of the limiting Quicksort density function, In: D. Gardy and A. Mokkadem (eds), Mathematics and Computer Science, Trends in Mathematics, Birkhäuser, Basel, 2000, pp. 53-64.
- James A. Fill and Svante Janson, Quicksort asymptotics, Journal of Algorithms, 44(1) (2002), 4-28.
- Steven Finch, Recursive PGFs for BSTs and DSTs, arXiv:2002.02809 [cs.DS], 2020; see Section 1.4. [He gives the constants a_s = (-2)^s*A(s) for s >= 2. He also calculates c(2) - c(8), where c(n) = B(n)*(-2)^n.]
- P. Hennequin, Combinatorial analysis of the quicksort algorithm, Informatique théoretique et applications, 23(3) (1989), 317-333.
- M. E. Hoffman and M. Kuba, Logarithmic integrals, zeta values, and tiered binomial coefficients, arXiv:1906.08347 [math.CO], 2019-2020; see Section 5.2. [They study the constants a_s = (-2)^s*A(s) = (-2)^s*L_n(B(1),...,B(s)) = (-2)^s*A330852(s)/A330860(s) for s >= 2. They also study the constants c(n) = B(n)*(-2)^n = A329001(n)/A330876(n).]
- Mireille Régnier, A limiting distribution for quicksort, Informatique théorique et applications, 23(3) (1989), 335-343.
- Uwe Rösler, A limit theorem for quicksort, Informatique théorique et applications, 25(1) (1991), 85-100. [He proved that M(t) has a Taylor expansion around zero with an infinite radius of convergence.]
- Kok Hooi Tan and Petros Hadjicostas, Density and generating functions of a limiting distribution in quicksort, Technical Report #568, Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA, 1993; see pp. 8-11.
- Kok Hooi Tan and Petros Hadjicostas, Some properties of a limiting distribution in Quicksort, Statistics and Probability Letters, 25(1) (1995), 87-94.
- Vytas Zacharovas, On the exponential decay of the characteristic function of the quicksort distribution, arXiv:1605.04018 [math.CO], 2016. [The author studies the tail of phi(t) = M(i*t), where i = sqrt(-1).]
Cf.
A001620,
A063090,
A067699,
A093418,
A096620,
A115107,
A288964,
A288965,
A288970,
A288971,
A329001 (numerators of B(n)*(-2)^n),
A330852 (numerators of A(n)),
A330860 (denominators of A(n)),
A330876 (denominators of B(n)*(-2)^n),
A335990 (numerators of B(n)).
Showing 1-6 of 6 results.
Comments