A330890 Decimal expansion of Product_{prime p == 1 (mod 4)} (1 + 1/p^2)/(1 - 1/p^2).
1, 1, 1, 3, 6, 8, 0, 6, 1, 8, 1, 3, 2, 3, 1, 6, 4, 8, 8, 8, 6, 1, 8, 9, 1, 9, 4, 1, 1, 9, 8, 3, 1, 9, 9, 1, 3, 6, 5, 6, 5, 8, 2, 7, 5, 4, 7, 8, 7, 7, 5, 9, 2, 3, 2, 4, 4, 5, 6, 1, 1, 5, 1, 6, 3, 4, 6, 7, 5, 6, 7, 2, 7, 7, 2, 5, 4, 6, 6, 5, 1, 0, 7, 5, 0, 3, 6, 6, 2, 7, 6, 5, 2, 7, 7, 4, 1, 8, 1, 5, 8, 8, 1, 7, 2
Offset: 1
Examples
1.1136806181323164888618919411983199136565827547877592324456...
Crossrefs
Programs
-
Mathematica
RealDigits[12*Catalan/Pi^2, 10, 120][[1]]
-
PARI
12*Catalan/Pi^2 \\ Michel Marcus, May 01 2020
Formula
Equals 12*G/Pi^2, where G is Catalan's constant (A006752).
Equals (1 + w)/(1 - w), where w = tanh(Sum_{prime p == 1 (mod 4)} arctanh(1/p^2)) = 0.0537832523783875... Physical interpretation: the constant w is the relativistic sum of the velocities c/p^2 over all Pythagorean primes p, in units where the speed of light c = 1. - Thomas Ordowski, Nov 14 2024
Extensions
Name edited by Thomas Ordowski, Nov 15 2024