A330894 Numbers of Pythagorean quadruples contained in the divisors of A330893(n).
1, 1, 2, 2, 2, 1, 3, 1, 3, 2, 4, 3, 2, 2, 1, 4, 1, 2, 3, 2, 7, 4, 2, 2, 8, 2, 1, 4, 4, 2, 3, 7, 3, 2, 5, 2, 2, 4, 6, 2, 5, 2, 11, 6, 4, 1, 4, 1, 6, 2, 4, 12, 2, 5, 1, 4, 6, 4, 2, 5, 6, 4, 1, 2, 3, 4, 17, 6, 2, 3, 6, 1, 5, 6, 1, 3, 4, 6, 6, 13, 1, 2, 4, 8, 4, 4
Offset: 1
Keywords
Examples
a(7) = 3 because A330893(7)=168, and the set of divisors of 168: {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains three Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}.
Programs
-
Maple
with(numtheory): for n from 3 to 1700 do : d:=divisors(n):n0:=nops(d):it:=0: for i from 1 to n0-3 do: for j from i+1 to n0-2 do : for k from j+1 to n0-1 do: for m from k+1 to n0 do: if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2 then it:=it+1: else fi: od: od: od: od: if it>0 then printf(`%d, `,it): else fi: od:
-
Mathematica
nq[n_] := If[Mod[n, 6] > 0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m-1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[Array[nq, 1638], # > 0 &] (* Giovanni Resta, May 04 2020 *)