cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330894 Numbers of Pythagorean quadruples contained in the divisors of A330893(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 3, 1, 3, 2, 4, 3, 2, 2, 1, 4, 1, 2, 3, 2, 7, 4, 2, 2, 8, 2, 1, 4, 4, 2, 3, 7, 3, 2, 5, 2, 2, 4, 6, 2, 5, 2, 11, 6, 4, 1, 4, 1, 6, 2, 4, 12, 2, 5, 1, 4, 6, 4, 2, 5, 6, 4, 1, 2, 3, 4, 17, 6, 2, 3, 6, 1, 5, 6, 1, 3, 4, 6, 6, 13, 1, 2, 4, 8, 4, 4
Offset: 1

Views

Author

Michel Lagneau, May 01 2020

Keywords

Examples

			a(7) = 3 because A330893(7)=168, and the set of divisors of 168: {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains three Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 3 to 1700 do :
       d:=divisors(n):n0:=nops(d):it:=0:
        for i from 1 to n0-3 do:
         for j from i+1 to n0-2 do :
          for k from j+1 to n0-1 do:
          for m from k+1 to n0 do:
           if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2
            then
            it:=it+1:
            else
           fi:
          od:
         od:
        od:
        od:
        if it>0 then
        printf(`%d, `,it):
        else fi:
       od:
  • Mathematica
    nq[n_] := If[Mod[n, 6] > 0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m-1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[Array[nq, 1638], # > 0 &] (* Giovanni Resta, May 04 2020 *)