cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330907 Denominator of the variance of the random number of comparisons in quicksort applied to lists of length n.

Original entry on oeis.org

1, 1, 1, 9, 36, 25, 900, 11025, 19600, 15876, 317520, 53361, 38419920, 33127380, 144288144, 2029052025, 129859329600, 115831315600, 37529346254400, 33870234994596, 6144260316480, 799769421360, 387088399938240, 355503061748835, 40953952713465792, 37864231428870000, 316002721554520000, 2056839142975402500, 1612561888092715560000
Offset: 0

Views

Author

Petros Hadjicostas, May 01 2020

Keywords

Examples

			The variances are: 0, 0, 0, 2/9, 29/36, 46/25, 3049/900, 60574/11025, 160599/19600, 182789/15876, 4913659/317520, 1072364/53361, ... = A330895/A330907.
		

References

  • D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, 1973; see answer to Ex. 8(a) of Section 6.2.2.

Crossrefs

Programs

  • Maple
    a := n -> denom(2*(n+1)*(harmonic(n,1) + 2*(n+1)*harmonic(n,2))):
    seq(a(n), n=0..28); # Peter Luschny, May 02 2020
  • PARI
    lista(nn) = {my(va = vector(nn)); for(n=1, nn, va[n] = denominator(n*(7*n+13) - 2*(n+1)*sum(k=1, n, 1/k) - 4*(n+1)^2*sum(k=1, n, 1/k^2))); concat(1, va); }

Formula

a(n) = denominator(fr(n)), where fr(n) = n*(7*n + 13) - 2*(n+1)*Sum_{k=1..n} (1/k) - 4*(n+1)^2*Sum_{k=1..n} (1/k^2).
a(n) = denominator(2*(n+1)*(H(n,1) + 2*(n+1)*H(n,2))), where H(n,s) are the generalized harmonic numbers. - Peter Luschny, May 02 2020