A330912 Sum of the smallest side lengths of all Heronian triangles with perimeter A051518(n).
3, 5, 5, 6, 5, 14, 38, 8, 20, 11, 37, 29, 43, 7, 31, 64, 11, 17, 37, 84, 19, 15, 70, 130, 22, 87, 101, 133, 122, 38, 241, 25, 149, 25, 111, 123, 225, 39, 220, 54, 120, 327, 254, 57, 103, 162, 227, 371, 41, 321, 34, 43, 29, 278, 373, 76, 70, 95, 577, 567, 157, 476, 221
Offset: 1
Keywords
Examples
a(1) = 3; there is one Heronian triangle with perimeter A051518(1) = 12, which is [3,4,5] and its smallest side length is 3. a(6) = 14; there are two Heronian triangles with perimeter A051518(6) = 32, [4,13,15] and [10,10,12]. The sum is 4 + 10 = 14.
Links
- Eric Weisstein's World of Mathematics, Heronian Triangle
- Wikipedia, Heronian triangle
- Wikipedia, Integer Triangle
Formula
a(n) = Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * chi(sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)))) * k, where chi(n) = 1 - ceiling(n) + floor(n) and c(n) = A051518(n). - Wesley Ivan Hurt, May 12 2020