A330916 Sum of the largest side lengths of all Heronian triangles with perimeter A051518(n).
5, 6, 8, 10, 13, 27, 61, 17, 35, 20, 59, 41, 96, 25, 80, 139, 30, 26, 57, 157, 37, 37, 140, 296, 40, 196, 207, 250, 209, 91, 587, 52, 294, 51, 267, 214, 498, 50, 539, 117, 310, 697, 530, 147, 206, 342, 503, 856, 73, 744, 75, 68, 85, 550, 793, 256, 172, 155, 1270, 1202
Offset: 1
Keywords
Examples
a(1) = 5; there is one Heronian triangle with perimeter A051518(1) = 12, which is [3,4,5] and its largest side length is 5. a(6) = 27; there are two Heronian triangles with perimeter A051518(6) = 32, [4,13,15] and [10,10,12]. The sum is 15 + 12 = 27.
Links
- Eric Weisstein's World of Mathematics, Heronian Triangle
- Wikipedia, Heronian triangle
- Wikipedia, Integer Triangle
Formula
a(n) = Sum_{k=1..floor(c(n)/3)} Sum_{i=k..floor((c(n)-k)/2)} sign(floor((i+k)/(c(n)-i-k+1))) * chi(sqrt((c(n)/2)*(c(n)/2-i)*(c(n)/2-k)*(c(n)/2-(c(n)-i-k)))) * (c(n)-i-k), where chi(n) = 1 - ceiling(n) + floor(n) and c(n) = A051518(n). - Wesley Ivan Hurt, May 12 2020