A330928 Starts of runs of 5 consecutive Niven (or harshad) numbers (A005349).
1, 2, 3, 4, 5, 6, 131052, 491424, 1275140, 1310412, 1474224, 1614623, 1912700, 2031132, 2142014, 2457024, 2550260, 3229223, 3931224, 4422624, 4914024, 5405424, 5654912, 5920222, 7013180, 7125325, 7371024, 8073023, 8347710, 9424832, 10000095, 10000096, 10000097
Offset: 1
Examples
131052 is a term since 131052 is divisible by 1 + 3 + 1 + 0 + 5 + 2 = 12, 131053 is divisible by 13, 131054 is divisible by 14, 131055 is divisible by 15, and 131056 is divisible by 16.
References
- Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Curtis Cooper and Robert E. Kennedy, On consecutive Niven numbers, Fibonacci Quarterly, Vol. 21, No. 2 (1993), pp. 146-151.
- Helen G. Grundman, Sequences of consecutive Niven numbers, Fibonacci Quarterly, Vol. 32, No. 2 (1994), pp. 174-175.
- Wikipedia, Harshad number.
- Brad Wilson, Construction of 2n consecutive n-Niven numbers, Fibonacci Quarterly, Vol. 35, No. 2 (1997), pp. 122-128.
Crossrefs
Programs
-
Magma
f:=func
; a:=[]; for k in [1..11000000] do if forall{m:m in [0..4]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020 -
Mathematica
nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[5]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 4]], {k, 5, 10^7}]; seq SequencePosition[Table[If[Divisible[n,Total[IntegerDigits[n]]],1,0],{n,10^7+200}],{1,1,1,1,1}][[;;,1]] (* Harvey P. Dale, Dec 24 2023 *)
-
PARI
{first( N=50, LEN=5, L=List())= for(n=1,oo, n+=LEN; for(m=1,LEN, n--%sumdigits(n) && next(2)); listput(L,n); N--|| break);L} \\ M. F. Hasler, Jan 03 2022
Comments