cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330928 Starts of runs of 5 consecutive Niven (or harshad) numbers (A005349).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 131052, 491424, 1275140, 1310412, 1474224, 1614623, 1912700, 2031132, 2142014, 2457024, 2550260, 3229223, 3931224, 4422624, 4914024, 5405424, 5654912, 5920222, 7013180, 7125325, 7371024, 8073023, 8347710, 9424832, 10000095, 10000096, 10000097
Offset: 1

Views

Author

Amiram Eldar, Jan 03 2020

Keywords

Comments

Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite.

Examples

			131052 is a term since 131052 is divisible by 1 + 3 + 1 + 0 + 5 + 2 = 12, 131053 is divisible by 13, 131054 is divisible by 14, 131055 is divisible by 15, and 131056 is divisible by 16.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.

Crossrefs

Cf. A005349, A060159; A330927, A154701, A141769, A330929, A330930 (same for 2, 3, 4, 6, 7 consecutive harshad numbers).

Programs

  • Magma
    f:=func; a:=[]; for k in [1..11000000] do  if forall{m:m in [0..4]|f(k+m)} then Append(~a,k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
    
  • Mathematica
    nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[5]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 4]], {k, 5, 10^7}]; seq
    SequencePosition[Table[If[Divisible[n,Total[IntegerDigits[n]]],1,0],{n,10^7+200}],{1,1,1,1,1}][[;;,1]] (* Harvey P. Dale, Dec 24 2023 *)
  • PARI
    {first( N=50, LEN=5, L=List())= for(n=1,oo, n+=LEN; for(m=1,LEN, n--%sumdigits(n) && next(2)); listput(L,n); N--|| break);L} \\ M. F. Hasler, Jan 03 2022

Formula

This A330928 = { A005349(k) | A005349(k+4) = A005349(k)+4 }. - M. F. Hasler, Jan 03 2022