A330942 Array read by antidiagonals: A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with n ones in every column and columns in nonincreasing lexicographic order.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 7, 1, 1, 1, 8, 75, 32, 1, 1, 1, 16, 1105, 2712, 161, 1, 1, 1, 32, 20821, 449102, 116681, 842, 1, 1, 1, 64, 478439, 122886128, 231522891, 5366384, 4495, 1, 1, 1, 128, 12977815, 50225389432, 975712562347, 131163390878, 256461703, 24320, 1, 1
Offset: 0
Examples
Array begins: ============================================================ n\k | 0 1 2 3 4 5 ----+------------------------------------------------------- 0 | 1 1 1 1 1 1 ... 1 | 1 1 2 4 8 16 ... 2 | 1 1 7 75 1105 20821 ... 3 | 1 1 32 2712 449102 122886128 ... 4 | 1 1 161 116681 231522891 975712562347 ... 5 | 1 1 842 5366384 131163390878 8756434117294432 ... 6 | 1 1 4495 256461703 78650129124911 ... ... The A(2,2) = 7 matrices are: [1 0] [1 0] [1 0] [1 1] [1 0] [1 0] [1 1] [1 0] [0 1] [0 1] [1 0] [1 1] [0 1] [1 1] [0 1] [1 0] [0 1] [0 1] [0 1] [1 1] [0 1] [0 1] [1 0]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
Mathematica
T[n_, k_] := With[{m = n k}, Sum[Binomial[Binomial[j, n] + k - 1, k] Sum[ (-1)^(i - j) Binomial[i, j], {i, j, m}], {j, 0, m}]]; Table[T[n - k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 10 2020, from PARI *)
-
PARI
T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j, n)+k-1, k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}
Comments