A330951 Number of singleton-reduced unlabeled rooted trees with n nodes.
1, 1, 1, 3, 5, 11, 24, 52, 119, 272, 635, 1499, 3577, 8614, 20903, 51076, 125565, 310302, 770536, 1921440, 4809851, 12081986, 30445041, 76938794, 194950040, 495174037, 1260576786, 3215772264, 8219437433, 21046602265, 53982543827, 138678541693, 356785641107
Offset: 1
Keywords
Examples
The a(1) = 1 through a(6) = 11 trees: o (o) (oo) (ooo) (oooo) (ooooo) ((oo)) ((ooo)) ((oooo)) (o(o)) (o(oo)) (o(ooo)) (oo(o)) (oo(oo)) ((o(o))) (ooo(o)) ((o)(oo)) ((o(oo))) ((oo(o))) (o((oo))) (o(o)(o)) (o(o(o)))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}]; Table[Length[Select[urt[n],FreeQ[#,q:{__List}/;Times@@Length/@q==1]&]],{n,10}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} seq(n)={my(v=vector(n)); v[1]=1; for(n=1, #v-1, v[n+1] = EulerT(v[1..n])[n] - EulerT(Vec(x^2*Ser(v[1..n-1])/(1+x), -n))[n]); v} \\ Andrew Howroyd, Dec 10 2020
Formula
G.f.: A(x) satisfies A(x) = x + x*exp(Sum_{k>=1} A(x^k)/k) - x*exp(Sum_{k>=1} x^k*A(x^k)/(1 + x^k)/k). - Andrew Howroyd, Dec 10 2020
a(n) ~ c * d^n / n^(3/2), where d = 2.69474016697407303512228736537683134987637576... and c = 0.41800971384719166056172258174139385922545... - Vaclav Kotesovec, Nov 16 2021
Extensions
Terms a(19) and beyond from Andrew Howroyd, Dec 10 2020
Comments