cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330951 Number of singleton-reduced unlabeled rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 24, 52, 119, 272, 635, 1499, 3577, 8614, 20903, 51076, 125565, 310302, 770536, 1921440, 4809851, 12081986, 30445041, 76938794, 194950040, 495174037, 1260576786, 3215772264, 8219437433, 21046602265, 53982543827, 138678541693, 356785641107
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

A rooted tree is singleton-reduced if no non-leaf node has all singleton branches, where a rooted tree is a singleton if its root has degree 1.

Examples

			The a(1) = 1 through a(6) = 11 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)
                ((oo))  ((ooo))   ((oooo))
                (o(o))  (o(oo))   (o(ooo))
                        (oo(o))   (oo(oo))
                        ((o(o)))  (ooo(o))
                                  ((o)(oo))
                                  ((o(oo)))
                                  ((oo(o)))
                                  (o((oo)))
                                  (o(o)(o))
                                  (o(o(o)))
		

Crossrefs

The Matula-Goebel numbers of these trees are given by A330943.
The series-reduced case is A001678.
Unlabeled rooted trees are counted by A000081.
Singleton-reduced phylogenetic trees are A000311.

Programs

  • Mathematica
    urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]],{ptn,IntegerPartitions[n-1]}];
    Table[Length[Select[urt[n],FreeQ[#,q:{__List}/;Times@@Length/@q==1]&]],{n,10}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, #v-1, v[n+1] = EulerT(v[1..n])[n] - EulerT(Vec(x^2*Ser(v[1..n-1])/(1+x), -n))[n]); v} \\ Andrew Howroyd, Dec 10 2020

Formula

G.f.: A(x) satisfies A(x) = x + x*exp(Sum_{k>=1} A(x^k)/k) - x*exp(Sum_{k>=1} x^k*A(x^k)/(1 + x^k)/k). - Andrew Howroyd, Dec 10 2020
a(n) ~ c * d^n / n^(3/2), where d = 2.69474016697407303512228736537683134987637576... and c = 0.41800971384719166056172258174139385922545... - Vaclav Kotesovec, Nov 16 2021

Extensions

Terms a(19) and beyond from Andrew Howroyd, Dec 10 2020