cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A330950 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 7, 7, 11, 11, 22, 15, 30, 42, 77, 42, 101, 56, 176, 176, 231, 135, 490, 490, 490, 792, 1002, 490, 1575, 627, 3010, 2436, 2436, 3718, 5604, 1958, 4565, 6842, 12310, 3718, 14883, 4565, 21637, 26015, 17977, 8349, 53174, 44583, 63261
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The a(1) = 1 through a(10) = 11 partitions:
  1  11  21  211   32   321    43    5111      522      631
             1111  311  2211   421   32111     3222     3331
                        21111  4111  41111     4221     4321
                                     221111    22221    5311
                                     311111    32211    32221
                                     2111111   222111   33211
                                     11111111  2211111  43111
                                                        322111
                                                        331111
                                                        3211111
                                                        31111111
For example, the Heinz number of (3,2) is 15, which is divisible by 5, so (3,2) is counted under a(5).
		

Crossrefs

The Heinz numbers of these partitions are given by A324851.
Partitions whose product is divisible by their sum are A057568.
Partitions whose Heinz number is divisible by all parts are A330952.
Partitions whose Heinz number is divisible by their product are A324925.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@Prime/@#,n]&]],{n,20}]

A330953 Number of integer partitions of n whose Heinz number (product of primes of parts) is divisible by their sum of primes of parts.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 3, 4, 6, 3, 12, 10, 12, 14, 27, 38, 44, 52, 48, 77, 101, 106, 127, 206, 268, 377, 392, 496, 602, 671, 821, 1090, 1318, 1568, 1926, 2260, 2703, 3258, 3942, 4858, 5923, 6891, 8286, 9728, 11676, 13775, 16314, 19749, 23474, 27793, 32989, 38775
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2020

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The a(1) = 1 through a(11) = 12 partitions: (A = 10, B = 11):
  1  2   3  4     5  6    7      8         9        A         B
     11     1111     222  3211   431       432      5311      542
                     321  22111  4211      3321     22111111  5411
                                 11111111  32211              33221
                                           321111             42221
                                           2211111            53111
                                                              322211
                                                              431111
                                                              521111
                                                              2222111
                                                              3311111
                                                              32111111
For example, the partition (3,3,2,2,1) is counted under a(11) because 5*5*3*3*2 = 450 is divisible by 5+5+3+3+2 = 18.
		

Crossrefs

The Heinz numbers of these partitions are given by A036844.
Numbers divisible by the sum of their prime indices are A324851.
Partitions whose product is divisible by their sum are A057568.
Partitions whose Heinz number is divisible by all parts are A330952.
Partitions whose Heinz number is divisible by their product are A324925.
Partitions whose Heinz number is divisible by their sum are A330950.
Partitions whose product is divisible by their sum of primes are A330954.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Divisible[Times@@Prime/@#,Plus@@Prime/@#]&]],{n,30}]

A340829 Number of strict integer partitions of n whose Heinz number (product of primes of parts) is divisible by n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 0, 0, 2, 3, 0, 4, 3, 4, 0, 8, 0, 10, 0, 11, 12, 19, 0, 0, 22, 0, 0, 46, 23, 56, 0, 64, 66, 86, 0, 125, 104, 135, 0, 196, 111, 230, 0, 0, 274, 353, 0, 0, 0, 563, 0, 687, 0, 974, 0, 1039, 1052, 1290, 0, 1473, 1511, 0, 0, 2707, 1614, 2664, 0
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions. The Heinz numbers of these partitions are squarefree numbers divisible by the sum of their prime indices.

Examples

			The a(6) = 1 through a(19) = 10 partitions (empty columns indicated by dots, A = 10, B = 11):
  321  43   .  .  631   65    .  76    941   A32    .  A7     .  B8
       421        4321  542      643   6431  6432      764       865
                        5321     652   7421  9321      872       874
                                 6421        54321     971       982
                                                       7532      A81
                                                       7541      8542
                                                       7631      8632
                                                       74321     8641
                                                                 8731
                                                                 85321
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
Positions of zeros are 2 and A013929.
The non-strict version is A330950 (A324851) q.v.
A000009 counts strict partitions.
A003963 multiplies together prime indices.
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A056239 adds up prime indices.
A057568 counts partitions whose product is divisible by their sum (A326149).
A067538 counts partitions whose length/max divides sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A102627 counts strict partitions whose length divides sum.
A112798 lists the prime indices of each positive integer.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A324925 counts partitions whose Heinz number is divisible by their product.
A326842 counts partitions whose parts and length all divide sum (A326847).
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A330952 counts partitions whose Heinz number is divisible by all parts.
A340828 counts strict partitions with length divisible by maximum.
A340830 counts strict partitions with parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Times@@Prime/@#,n]&]],{n,30}]
Showing 1-3 of 3 results.