cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330964 Array read by antidiagonals: A(n,k) is the number of sets of nonempty subsets of a k-element set where each element appears in at most n subsets.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 15, 8, 2, 1, 1, 52, 59, 8, 2, 1, 1, 203, 652, 109, 8, 2, 1, 1, 877, 9736, 3623, 128, 8, 2, 1, 1, 4140, 186478, 200522, 11087, 128, 8, 2, 1, 1, 21147, 4421018, 16514461, 2232875, 21380, 128, 8, 2, 1, 1, 115975, 126317785, 1912959395, 775098224, 15312665, 29228, 128, 8, 2, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 04 2020

Keywords

Comments

A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with rows in decreasing order and at most n ones in every column.

Examples

			Array begins:
==================================================================
n\k | 0 1 2   3     4         5             6                7
----+-------------------------------------------------------------
  0 | 1 1 1   1     1         1             1                1 ...
  1 | 1 2 5  15    52       203           877             4140 ...
  2 | 1 2 8  59   652      9736        186478          4421018 ...
  3 | 1 2 8 109  3623    200522      16514461       1912959395 ...
  4 | 1 2 8 128 11087   2232875     775098224     428188962261 ...
  5 | 1 2 8 128 21380  15312665   22165394234   57353442460140 ...
  6 | 1 2 8 128 29228  70197998  422059040480 5051078354829005 ...
  7 | 1 2 8 128 32297 227731312 5686426671375 ...
      ...
The T(1,2) = 5 set systems are:
  {},
  {{1,2}},
  {{1,2}, {2}},
  {{1},{1,2}},
  {{1}, {2}}.
		

Crossrefs

Rows n=0..4 are A000012, A000110, A178165, A178171, A178173.
Main diagonal gives A374573.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); (vecsum(WeighT(v)) + 1)^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}

Formula

Lim_{n->oo} A(n,k) = 2^k.