A330964 Array read by antidiagonals: A(n,k) is the number of sets of nonempty subsets of a k-element set where each element appears in at most n subsets.
1, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 15, 8, 2, 1, 1, 52, 59, 8, 2, 1, 1, 203, 652, 109, 8, 2, 1, 1, 877, 9736, 3623, 128, 8, 2, 1, 1, 4140, 186478, 200522, 11087, 128, 8, 2, 1, 1, 21147, 4421018, 16514461, 2232875, 21380, 128, 8, 2, 1, 1, 115975, 126317785, 1912959395, 775098224, 15312665, 29228, 128, 8, 2, 1
Offset: 0
Examples
Array begins: ================================================================== n\k | 0 1 2 3 4 5 6 7 ----+------------------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 1 2 5 15 52 203 877 4140 ... 2 | 1 2 8 59 652 9736 186478 4421018 ... 3 | 1 2 8 109 3623 200522 16514461 1912959395 ... 4 | 1 2 8 128 11087 2232875 775098224 428188962261 ... 5 | 1 2 8 128 21380 15312665 22165394234 57353442460140 ... 6 | 1 2 8 128 29228 70197998 422059040480 5051078354829005 ... 7 | 1 2 8 128 32297 227731312 5686426671375 ... ... The T(1,2) = 5 set systems are: {}, {{1,2}}, {{1,2}, {2}}, {{1},{1,2}}, {{1}, {2}}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..209
Crossrefs
Programs
-
PARI
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); (vecsum(WeighT(v)) + 1)^k/prod(i=1, #v, i^v[i]*v[i]!)} T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}
Formula
Lim_{n->oo} A(n,k) = 2^k.
Comments